

Edition 1.0 2009-03

INTERNATIONAL STANDARD

Communication networks and systems for power utility automation – Part 7-420: Basic communication structure – Distributed energy resources logical nodes

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2009 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

Catalogue of IEC publications: <u>www.iec.ch/searchpub</u>

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.

IEC Just Published: <u>www.iec.ch/online_news/justpub</u>

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

Electropedia: <u>www.electropedia.org</u>

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

Customer Service Centre: <u>www.iec.ch/webstore/custserv</u> If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: csc@iec.ch Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00

Edition 1.0 2009-03

INTERNATIONAL STANDARD

Communication networks and systems for power utility automation – Part 7-420: Basic communication structure – Distributed energy resources logical nodes

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE XD

ICS 33.200

ISBN 978-2-88910-578-6

CONTENTS

FO	REWO)RD		7	
INT	RODI	JCTION		9	
1	Scope12			.12	
2	Normative references			.12	
3	Terms, definitions and abbreviations1				
3.1 Terms and definitions					
	3.2	DER at	obreviated terms	.18	
4	Conf	ormance)	.20	
5	Logic	al node	s for DER management systems	.20	
	5.1	Overvie	ew of information modelling (informative)	.20	
		5.1.1	Data information modelling constructs	.20	
		5.1.2	Logical devices concepts	.21	
		5.1.3	Logical nodes structure	.22	
		5.1.4	Naming structure	.22	
		5.1.5	Interpretation of logical node tables	.23	
		5.1.6	System logical nodes LN Group: L (informative)	.24	
		5.1.7	Overview of DER management system LNs	.27	
	5.2	Logical	nodes for the DER plant ECP logical device	.29	
		5.2.1	DER plant electrical connection point (ECP) logical device (informative)	.29	
		5.2.2	LN: DER plant corporate characteristics at the ECP Name: DCRP	. 31	
		5.2.3	LN: Operational characteristics at ECP Name: DOPR	. 31	
		5.2.4	LN: DER operational authority at the ECP Name: DOPA	. 32	
		5.2.5	LN: Operating mode at ECP Name: DOPM	. 33	
		5.2.6	LN: Status information at the ECP Name: DPST	.34	
		5.2.7	LN: DER economic dispatch parameters Name: DCCT	. 35	
		5.2.8	LN: DER energy and/or ancillary services schedule control Name:	36	
		5.2.9	LN: DER energy and/or ancillary services schedule Name: DSCH	.37	
	5.3	Logical	nodes for the DER unit controller logical device	.38	
		5.3.1	DER device controller logical device (informative)	.38	
		5.3.2	LN: DER controller characteristics Name: DRCT	.38	
		5.3.3	LN: DER controller status Name: DRCS	. 39	
		5.3.4	LN: DER supervisory control Name: DRCC	.40	
6	Logic	al node:	s for DER generation systems	.42	
	6.1	Logical	nodes for DER generation logical device	.42	
		6.1.1	DER generator logical device (informative)	.42	
		6.1.2	LN: DER unit generator Name: DGEN	.42	
		6.1.3	LN: DER generator ratings Name: DRAT	.44	
		6.1.4	LN: DER advanced generator ratings Name: DRAZ	.45	
		6.1.5	LN: Generator cost Name: DCST	.46	
	6.2	Logical	nodes for DER excitation logical device	.47	
		6.2.1	DER excitation logical device (informative)	.47	
		6.2.2	LN: Excitation ratings Name: DREX	.47	
		6.2.3	LN: Excitation Name: DEXC	.48	
	6.3	Logical	nodes for DER speed/frequency controller	.49	

		6.3.1	Speed/frequency logical device (informative)	49
		6.3.2	LN: Speed/Frequency controller Name: DSFC	49
	6.4	Logical	nodes for DER inverter/converter logical device	50
		6.4.1	Inverter/converter logical device (informative)	50
		6.4.2	LN: Rectifier Name: ZRCT	51
		6.4.3	LN: Inverter Name: ZINV	53
7	Logic	al node	s for specific types of DER	55
	7.1	Logical	nodes for reciprocating engine logical device	55
		7.1.1	Reciprocating engine description (informative)	55
		7.1.2	Reciprocating engine logical device (informative)	55
		7.1.3	LN: Reciprocating engine Name: DCIP	56
	7.2	Logical	nodes for fuel cell logical device	57
		7.2.1	Fuel cell description (informative)	57
		7.2.2	Fuel cell logical device (informative)	59
		7.2.3	LN: Fuel cell controller Name: DFCL	60
		7.2.4	LN: Fuel cell stack Name: DSTK	61
		7.2.5	LN: Fuel processing module Name: DFPM	62
	7.3	Logical	nodes for photovoltaic system (PV) logical device	63
		7.3.1	Photovoltaic system description (informative)	63
		7.3.2	Photovoltaics system logical device (informative)	65
		7.3.3	LN: Photovoltaics module ratings Name: DPVM	67
		7.3.4	LN: Photovoltaics array characteristics Name: DPVA	68
		7.3.5	LN: Photovoltaics array controller Name: DPVC	69
		7.3.6	LN: Tracking controller Name: DTRC	70
	7.4	Logical	nodes for combined heat and power (CHP) logical device	72
		7.4.1	Combined heat and power description (informative)	72
		7.4.2	Combined heat and power logical device (informative)	75
		7.4.3	LN: CHP system controller Name: DCHC	76
		7.4.4	LN: Thermal storage Name: DCTS	77
		7.4.5	LN: Boiler Name: DCHB	78
8	Logic	al node	s for auxiliary systems	78
	8.1	Logical	nodes for fuel system logical device	78
		8.1.1	Fuel system logical device (informative)	78
		8.1.2	LN: Fuel characteristics Name: MFUL	80
		8.1.3	LN: Fuel delivery system Name: DFLV	80
	8.2	Logical	nodes for battery system logical device	81
		8.2.1	Battery system logical device (informative)	81
		8.2.2	LN: Battery systems Name: ZBAT	82
		8.2.3	LN: Battery charger Name: ZBTC	83
	8.3	Logical	node for fuse device	84
		8.3.1	Fuse logical device (informative)	84
		8.3.2	LN: Fuse Name: XFUS	84
	8.4	Logical	node for sequencer	85
		8.4.1	Sequencer logical device	85
		8.4.2	LN: Sequencer Name: FSEQ	85
	8.5	Logical	nodes for physical measurements	86
		8.5.1	Physical measurements (informative)	86
		8.5.2	LN: Temperature measurements Name: STMP	86

		8.5.3	LN: Pressure measurements Name: MPRS	87
		8.5.4	LN: Heat measured values Name: MHET	87
		8.5.5	LN: Flow measurements Name: MFLW	88
		8.5.6	LN: Vibration conditions Name: SVBR	90
		8.5.7	LN: Emissions measurements Name: MENV	90
		8.5.8	LN: Meteorological conditions Name: MMET	91
	8.6	Logical	I nodes for metering	91
		8.6.1	Electric metering (informative)	91
9	DER	commo	n data classes (CDC)	92
	9.1	Array C	CDCs	92
		9.1.1	E-Array (ERY) enumerated common data class specification	92
		9.1.2	V-Array (VRY) visible string common data class specification	92
	9.2	Schedu	ıle CDCs	93
		9.2.1	Absolute time schedule (SCA) settings common data class specification	93
		9.2.2	Relative time schedule (SCR) settings common data class specification	94
Ann	nex A	(informa	ative) Glossary	96
Bibl	Bibliography			98

Figure 1 – Example of a communications configuration for a DER plant	10
Figure 2 – IEC 61850 modelling and connections with CIM and other IEC TC 57 models	11
Figure 3 – Information model hierarchy	21
Figure 4 – Example of relationship of logical device, logical nodes, data objects, and common data classes	22
Figure 5 – Overview: Conceptual organization of DER logical devices and logical nodes	28
Figure 6 – Illustration of electrical connection points (ECP) in a DER plant	29
Figure 7 – Inverter / converter configuration	50
Figure 8 – Example of a reciprocating engine system (e.g. Diesel Gen-Set)	55
Figure 9 – Example of LNs in a reciprocating engine system	56
Figure 10 – Fuel cell – Hydrogen/oxygen proton-exchange membrane fuel cell (PEM)	58
Figure 11 – PEM fuel cell operation	58
Figure 12 – Example of LNs used in a fuel cell system	59
Figure 13 – Example: One line diagram of an interconnected PV system	64
Figure 14 – Schematic diagram of a large PV installation with two arrays of several sub-arrays	65
Figure 15 – Example of LNs associated with a photovoltaics system	66
Figure 16 – Two examples of CHP configurations	73
Figure 17 – CHP unit includes both domestic hot water and heating loops	74
Figure 18 – CHP unit includes domestic hot water with hybrid storage	74
Figure 19 – CHP unit includes domestic hot water without hybrid storage	74
Figure 20 – Example of LNs associated with a combined heat and power (CHP) system	75

Table 1 – Interpretation of logical node tables	23
Table 2 – LPHD class	25
Table 3 – Common LN class	26
Table 4 – LLN0 class	27
Table 5 – DER plant corporate characteristics at the ECP, LN (DCRP)	31
Table 6 – Operational characteristics at the ECP, LN (DOPR)	32
Table 7 – DER operational authority at the ECP, LN (DOPA)	33
Table 8 – Operating mode at the ECP, LN (DOPM)	34
Table 9 – Status at the ECP, LN (DPST)	35
Table 10 – DER Economic dispatch parameters, LN (DCCT)	35
Table 11 – DER energy schedule control, LN (DSCC)	36
Table 12 – DER Energy and ancillary services schedule, LN (DSCH)	37
Table 13 – DER controller characteristics, LN DRCT	38
Table 14 – DER controller status, LN DRCS	39
Table 15 – DER supervisory control, LN DRCC	40
Table 16 – DER unit generator, LN (DGEN)	42
Table 17 – DER Basic Generator ratings, LN (DRAT)	44
Table 18 – DER advanced generator ratings, LN (DRAZ)	46
Table 19 – Generator cost, LN DCST	47
Table 20 – Excitation ratings, LN (DREX)	47
Table 21 – Excitation, LN (DEXC)	48
Table 22 – Speed/frequency controller, LN (DSFC)	49
Table 23 – Rectifier, LN (ZRCT)	51
Table 24 – Inverter, LN (ZINV)	53
Table 25 – Reciprocating engine, LN (DCIP)	57
Table 26 – Fuel cell controller, LN (DFCL)	60
Table 27 – Fuel cell stack, LN (DSTK)	61
Table 28 – Fuel cell processing module, LN (DFPM)	62
Table 29 – Photovoltaic module characteristics, LN (DPVM)	67
Table 30 – Photovoltaic array characteristics, LN (DPVA)	68
Table 31 – Photovoltaic array controller, LN (DPVC)	69
Table 32 – Tracking controller, LN (DTRC)	70
Table 33 – CHP system controller, LN (DCHC)	76
Table 34 – CHP thermal storage, LN (DCTS)	77
Table 35 – CHP Boiler System, LN (DCHB)	78
Table 36 – Fuel types	79
Table 37 – Fuel characteristics, LN (MFUL)	80
Table 38 – Fuel systems, LN (DFLV)	81
Table 39 – Battery systems, LN (ZBAT)	82
Table 40 – Battery charger, LN (ZBTC)	83
Table 41 – Fuse, LN (XFUS)	84
Table 42 – Sequencer, LN (FSEQ)	85
Table 43 – Temperature measurements, LN (STMP)	86

Table 44 – Pressure measurements, LN (MPRS)	87
Table 45 – Heat measurement, LN (MHET)	88
Table 46 – Flow measurement, LN (MFLW)	89
Table 47 – Vibration conditions, LN (SVBR)	90
Table 48 – Emissions measurements, LN (MENV)	91
Table 49 – E-Array (ERY) common data class specification	92
Table 50 – V-Array (VRY) common data class specification	92
Table 51 – Schedule (SCA) common data class specification	93
Table 52 – Schedule (SCR) common data class specification	94

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMUNICATION NETWORKS AND SYSTEMS FOR POWER UTILITY AUTOMATION –

Part 7-420: Basic communication structure – Distributed energy resources logical nodes

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61850-7-420 has been prepared by IEC technical committee 57: Power systems management and associated information exchange.

The text of this standard is based on the following documents:

FDIS	Report on voting
57/981/FDIS	57/988/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

In Clauses 5 to 8 of this document, each subclause contains an initial informative clause, followed by normative clauses. Specifically, any subclause identified as informative is informative; any clause with no identification is considered normative.

A list of all parts of the IEC 61850 series, under the general title: *Communication networks and systems for power utility automation*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

INTRODUCTION

Increasing numbers of DER (distributed energy resources) systems are being interconnected to electric power systems throughout the world. As DER technology evolves and as the impact of dispersed generation on distribution power systems becomes a growing challenge - and opportunity, nations worldwide are recognizing the economic, social, and environmental benefits of integrating DER technology within their electric infrastructure.

The manufacturers of DER devices are facing the age-old issues of what communication standards and protocols to provide to their customers for monitoring and controlling DER devices, in particular when they are interconnected with the electric utility system. In the past, DER manufacturers developed their own proprietary communication technology. However, as utilities, aggregators, and other energy service providers start to manage DER devices which are interconnected with the utility power system, they are finding that coping with these different communication technologies present major technical difficulties, implementation costs, and maintenance costs. Therefore, utilities and DER manufacturers recognize the growing need to have one international standard that defines the communication and control interfaces for all DER devices. Such standards, along with associated guidelines and uniform procedures would simplify implementation, reduce installation costs, reduce maintenance costs, and improve reliability of power system operations.

The logical nodes in this document are intended for use with DER, but may also be applicable to central-station generation installations that are comprised of groupings of multiple units of the same types of energy conversion systems that are represented by the DER logical nodes in this document. This applicability to central-station generation is strongest for photovoltaics and fuel cells, due to their modular nature.

Communications for DER plants involve not only local communications between DER units and the plant management system, but also between the DER plant and the operators or aggregators who manage the DER plant as a virtual source of energy and/or ancillary services. This is illustrated in Figure 1.

Example of a Communications Configuration for a DER Plant

Key

CHP combined heat and power

WAN wide area network

DER distributed energy resources

PV photovoltaics

LAN local area network

Figure 1 – Example of a communications configuration for a DER plant

In basic terms, "communications" can be separated into four parts:

- information modelling (the types of data to be exchanged nouns),
- services modelling (the read, write, or other actions to take on the data verbs),
- communication protocols (mapping the noun and verb models to actual bits and bytes),
- telecommunication media (fibre optics, radio systems, wireless systems, and other physical equipment).

This document addresses only the IEC 61850 information modelling for DER. Other IEC 61850 documents address the services modelling (IEC 61850-7-2) and the mapping to communication protocols (IEC 61850-8-x). In addition, a systems configuration language (SCL) for DER (IEC 61850-6-x) would address the configuration of DER plants.

The general technology for information modelling has developed to become well-established as the most effective method for managing information exchanges. In particular, the IEC 61850-7-x information models for the exchange of information within substations have become International Standard. Many of the components of this standard can be reused for information models of other types of devices.

In addition to the IEC 61850 standards, IEC TC 57 has developed the common information model (CIM) that models the relationships among power system elements and other

information elements so that these relationships can be communicated across systems. Although this standard does not address these CIM relationships for DER, it is fully compatible with the CIM concepts.

The interrelationship between IEC TC 57 modelling standards is illustrated in Figure 2. This illustration shows as horizontal layers the three components to an information exchange model for retrieving data from the field, namely, the communication protocol profiles, the service models, and the information models. Above these layers is the information model of utility-specific data, termed the common information model (CIM), as well as all the applications and databases needed in utility operations. Vertically, different information models are shown:

- substation automation (IEC 61850-7-4),
- large hydro plants (IEC 61850-7-410),
- distributed energy resources (DER) (IEC 61850-7-420),
- distribution automation (under development),
- advanced metering infrastructure (as pertinent to utility operations) (pending).

Figure 2 – IEC 61850 modelling and connections with CIM and other IEC TC 57 models

IEC 61850 Models and the Common Information Model (CIM)

COMMUNICATION NETWORKS AND SYSTEMS FOR POWER UTILITY AUTOMATION –

Part 7-420: Basic communication structure – Distributed energy resources logical nodes

1 Scope

This International Standard defines the IEC 61850 information models to be used in the exchange of information with distributed energy resources (DER), which comprise dispersed generation devices and dispersed storage devices, including reciprocating engines, fuel cells, microturbines, photovoltaics, combined heat and power, and energy storage.

The IEC 61850 DER information model standard utilizes existing IEC 61850-7-4 logical nodes where possible, but also defines DER-specific logical nodes where needed.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61850-7-2:2003, Communication networks and systems in substations – Part 7-2: Basic communication structure for substations and feeder equipment – Abstract communication service interface (ACSI)¹⁾

IEC 61850-7-3:2003, Communication networks and systems in substations – Part 7-3: Basic communication structure for substations and feeder equipment – Common data classes ¹⁾

IEC 61850-7-4:2003, Communication networks and systems in substations – Part 7-4: Basic communication structure for substations and feeder equipment – Compatible logical node classes and data classes ¹)

IEC 61850-7-410, Communication networks and systems for power utility automation – Part 7-410: Hydroelectric power plants – Communication for monitoring and control

ISO 4217, Codes for the representation of currencies and funds

¹⁾ A new edition of this document is in preparation.

3 Terms, definitions and abbreviations

For the purposes of this document, the following terms, definitions and abbreviations apply.

- 13 -

3.1 Terms and definitions

3.1.1

ambient temperature

temperature of the medium in the immediate vicinity of a device

[IEC/TS 62257-8-1:2007, definition 3.15 modified]

3.1.2

combined heat and power (CHP) co-generation

production of heat which is used for non-electrical purposes and also for the generation of electric energy

[IEV 602-01-24, modified]

NOTE Conventional power plants emit the heat produced as a useless byproduct of the generation of electric energy into the environment. With combined heat and power, the excess heat is captured for domestic or industrial heating purposes or – in form of steam – is used for driving a steam turbine connected to an air-conditioner compressor. Alternatively, the production of heat may be the primary purpose of combined heat and power, whereas excess heat is used for the generation of electric energy.

3.1.3 common data class CDC

classes of commonly used data structures which are defined in IEC 61850-7-3

3.1.4

device

material element or assembly of such elements intended to perform a required function

[IEV 151-11-20]

NOTE A device may form part of a larger device.

3.1.5 electrical connection point

ECP

point of electrical connection between the DER source of energy (generation or storage) and any electric power system (EPS)

Each DER (generation or storage) unit has an ECP connecting it to its local power system; groups of DER units have an ECP where they interconnect to the power system at a specific site or plant; a group of DER units plus local loads have an ECP where they are interconnected to the utility power system.

NOTE For those ECPs between a utility EPS and a plant or site EPS, this point is identical to the point of common coupling (PCC) in the IEEE 1547 "Standard for Interconnecting Distributed Resources with Electric Power Systems".

3.1.6 electric power system EPS facilities that deliver electric power to a load

[IEEE 1547]

3.1.7 event event information

- a) something that happens in time [IEV 111-16-04]
- b) monitored information on the change of state of operational equipment

[IEV 371-02-04]

NOTE In power system operations, an event is typically state information and/or state transition (status, alarm, or command) reflecting power system conditions.

3.1.8

fuel cell

- a) generator of electricity using chemical energy directly by ionisation and oxidation of the fuel [IEV 602-01-33];
- b) cell that can change chemical energy from continuously supplied reactants to electric energy by an electrochemical process [IEV 482-01-05]

3.1.9

fuel cell stack

individual fuel cells connected in series

NOTE Fuel cells are stacked to increase voltage.

[US DOE]

3.1.10

function

a computer subroutine; specifically: one that performs a calculation with variables provided by a program and supplies the program with a single result

[Merriam-Webster dictionary]

NOTE This term is very general and can often be used to mean different ideas in different contexts. However, in the context of computer-based technologies, it is used to imply software or computer hardware tasks.

3.1.11

generator

- a) energy transducer that transforms non-electric energy into electric energy [IEV 151-13-35];
- b) device that converts kinetic energy to electrical energy, generally using electromagnetic induction

The reverse conversion of electrical energy into mechanical energy is done by an electric motor, and motors and generators have many similarities. The prime mover source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a hydropower turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, or any other source of mechanical energy. [WIKI 2007-12]

3.1.12

information

- a) intelligence or knowledge capable of being represented in forms suitable for communication, storage or processing [IEV 701-01-01];
- b) knowledge concerning objects, such as facts, events, things, processes, or ideas, including concepts, that within a certain context has a particular meaning [ISO/IEC 2382-1, definition 01.01.01]

NOTE Information may be represented for example by signs, symbols, pictures, or sounds.

3.1.13

information exchange

communication process between two or more computer-based systems in order to transmit and receive information

NOTE The exchange of information between systems requires interoperable communication services.

3.1.14

insolation

solar radiation that has been received

[Merriam-Webster dictionary]

3.1.15

inverter

- a) static power converter (SPC);
- b) device that converts DC electricity into AC electricity, equipment that converts direct current from the array field to alternating current, the electric equipment used to convert electrical power into a form or forms of electrical power suitable for subsequent use by the electric utility

[IEC 61727:2004, definition 3.8]

NOTE Any static power converter with control, protection, and filtering functions used to interface an electric energy source with an electric utility system. Sometimes referred to as power conditioning subsystems, power conversion systems, solid-state converters, or power conditioning units.

3.1.16

irradiance

density of radiation incident on a given surface usually expressed in watts per square centimeter or square meter

[Merriam-Webster dictionary]

NOTE "Irradiance" is used when the electromagnetic radiation is incident on the surface. "Radiant excitance" or "radiant emittance" is used when the radiation is emerging from the surface. The SI units for all of these quantities are watts per square metre $(W \cdot m^{-2})$, while the cgs units are ergs per square centimeter per second (erg $\cdot cm^{-2} \cdot s^{-1}$, often used in astronomy). These quantities are sometimes called intensity, but this usage leads to confusion with radiant intensity, which has different units.

3.1.17

measured value

physical or electrical quantity, property or condition that is to be measured

[IEC 61850-7-4]

NOTE 1 Measured values are usually monitored, but may be calculated from other values. They are also usually considered to be analogue values.

NOTE 2 The result of a sampling of an analogue magnitude of a particular quantity.

3.1.18

membrane

the separating layer in a fuel cell that acts as electrolyte (a ion-exchanger) as well as a barrier film separating the gases in the anode and cathode compartments of the fuel cell

[US DOE]

3.1.19

monitor

to check at regular intervals selected values regarding their compliance to specified values, ranges of values or switching conditions

[IEV 351-22-03]

3.1.20

photovoltaic cell

device in which the photovoltaic effect is utilized

[IEV 521-04-34]

3.1.21

photovoltaic system

- a) a complete set of components for converting sunlight into electricity by the photovoltaic process, including the array and balance of system components [US DOE];
- b) a system comprises all inverters (one or multiple) and associated BOS (balance-of-system components) and arrays with one point of common coupling, described in IEC 61836 as PV power plant [IEC 61727:2004, definition 3.7]

NOTE The component list and system configuration of a photovoltaic system varies according to the application, and can also include the following sub-systems: power conditioning, energy storage, system monitoring and control and utility grid interface.

3.1.22 photovoltaics PV

of, relating to, or utilizing the generation of a voltage when radiant energy falls on the boundary between dissimilar substances (as two different semiconductors)

[Merriam-Webster dictionary]

3.1.23 point of common coupling

PCC

point of a power supply network, electrically nearest to a particular load, at which other loads are, or may be, connected [IEV 161-07-15]

NOTE 1 These loads can be either devices, equipment or systems, or distinct customer's installations.

NOTE 2 In some applications, the term "point of common coupling" is restricted to public networks.

NOTE 3 The point where a local EPS is connected to an area EPS [IEEE 1547]. The local EPS may include distributed energy resources as well as load (see IEV definition which only includes load).

3.1.24

power conversion

power conversion is the process of converting power from one form into another

This could include electromechanical or electrochemical processes.

In electrical engineering, power conversion has a more specific meaning, namely converting electric power from one form to another. This could be as simple as a transformer to change the voltage of AC power, but also includes far more complex systems. The term can also refer to a class of electrical machinery that is used to convert one frequency of electrical power into another frequency.

One way of classifying power conversion systems is according to whether the input and output are alternating current (AC) or direct current (DC), thus:

DC to DC

- DC to DC converter
- Voltage stabiliser
- Linear regulator

AC to DC

- Rectifier
- Mains power supply unit (PSU)

Switched-mode power supply

DC to AC

Inverter

AC to AC

- Transformer/autotransformer
- Voltage regulator

[WIKI 2007-12]

3.1.25

prime mover

equipment acting as the energy source for the generation of electricity

NOTE Examples include diesel engine, solar panels, gas turbines, wind turbines, hydro turbines, battery storage, water storage, air storage, etc.

3.1.26

PV array

a) a mechanically integrated assembly of modules or panels and support structure that forms a d.c. electricity-producing unit

An array does not include foundation, tracking apparatus, thermal control, and other such components.

b) a mechanically and electrically integrated assembly of PV modules, and other necessary components, to form a DC power supply unit [IEC 60364-7-712:2002, definition 712.3.4]

NOTE A PV array may consist of a single PV module, a single PV string, or several parallel-connected strings, or several parallel-connected PV sub-arrays and their associated electrical components. For the purposes of this standard the boundary of a PV array is the output side of the PV array disconnecting device. Two or more PV arrays, which are not interconnected in parallel on the generation side of the power conditioning unit, shall be considered as independent PV arrays.

3.1.27

PV module

the smallest complete environmentally protected assembly of interconnected cells

[IEC/TS 62257-7-1:2006, definition 3.34]

NOTE Colloquially referred to as a "solar module".

3.1.28 PV string a circuit of series-connected modules [IEC/TS 62257-7-1:2006, definition 3.36]

3.1.29 reciprocating engine piston engine

an engine in which the to-and-fro motion of one or more pistons is transformed into the rotary motion of a crankshaft

[Merriam-Webster dictionary]

NOTE The most common form of reciprocating engines is the internal combustion engine using the burning of gasoline, diesel fuel, oil or natural gas to provide pressure. In DER systems, the most common form is the diesel engine.

3.1.30

reformate

hydrocarbon fuel that has been processed into hydrogen and other products for use in fuel cells

- 18 -

[US DOE]

3.1.31

set point

the level or point at which a variable physiological state (as body temperature or weight) tends to stabilize

[Merriam-Webster Dictionary]

3.1.32

set point command

command in which the value for the required state of operational equipment is transmitted to a controlled station where it is stored

[IEV 371-03-11]

NOTE A setpoint is usually an analogue value which sets the controllable target for a process or sets limits or other parameters used for managing the process.

3.1.33 standard test conditions

STC

a standard set of reference conditions used for the testing and rating of photovoltaic cells and modules

The standard test conditions are:

- a) PV cell temperature of 25 °C;
- b) irradiance in the plane of the PV cell or module of 1 000 W/m^2 ;
- c) light spectrum corresponding to an atmospheric air mass of 1,5

[IEC/TS 62257-7-1:2006, definition 3.46]

3.1.34

turbine

machine for generating rotary mechanical power from the energy in a stream of fluid

The energy, originally in the form of head or pressure energy, is converted to velocity energy by passing through a system of stationary and moving blades in the turbine.

[US DOE]

3.2 **DER abbreviated terms**

Clause 4 of IEC 61850-7-4 defines abbreviated terms for building concatenated data names. The following DER abbreviated terms are proposed as additional terms for building concatenated data names.

Term	Description	Term	Description
Abs	Absorbing	EI	Elevation
Acc	Accumulated	Em	Emission
Act	Active, activated	Emg	Emergency
Algn	Alignment	Encl	Enclosure
Alt	Altitude	Eng	Engine
Amb	Ambient	Est	Estimated
Arr	Array	ExIm	Export/import
Aval	Available	Exp	Export
Azi	Azimuth	Forc	Forced
Bas	Base	Fuel	Fuel
Bck	Backup	Fx	Fixed
Bnd	Band	Gov	Governor
Cal	Calorie, caloric	Heat	Heat
Cct	Circuit	Hor	Horizontal
Cmpl	Complete, completed	Hr	Hour
Cmut	Commute, commutator	Hyd	Hydrogen (suggested in
Cnfg	Configuration	Ы	Identity
Cntt	Contractual	lmn	Import
Con	Constant	inip Ind	Independent
Conn	Connected, connections	ind In ent	
Conv	Conversion, converted	Inert	
Cool	Coolant	Inf	Information
Cost	Cost	Insol	Insolation
Csmp	Consumption, consumed	Isld	Islanded
Day	Day	lso	Isolation
Db	Deadband	Maint	Maintenance
Dc	Direct current	Man	Manual
Dct	Direct	Mat	Material
DCV	DC voltage	Mdul	Module
Deg	Degrees	Mgt	Management
Dep	Dependent	Mrk	Market
DER	Distributed energy resource	Obl	Obligation
Dff	Diffuse	Off	Off
Drt	Derate	On	On
Drv	Drive	Ox	Oxidant
ECP	Electrical connection point	Оху	Oxygen
Efc	Efficiency	Pan	Panel
	·		

Term	Description	Term	Description
PCC	Point of common coupling	Snw	Snow
Perm	Permission	Srt	Short
Pk	Peak	Stab	Stabilizer
PInt	Plant, facility	Stp	Step
Proc	Process	Thrm	Thermal
Pv	Photovoltaics	Tilt	Tilt
Qud	Quad	Tm	Time
Rad	Radiation	Trk	Track
Ramp	Ramp	Tur	Turbine
Rdy	Ready	Unld	Unload
Reg	Regulation	Util	Utility
Rng	Range	Vbr	Vibration
Rsv	Reserve	Ver	Vertical
Schd	Schedule	Volm	Volume
Self	Self	Wtr	Water (suggested in addition
Ser	Series, serial		to H_2O)
Slp	Sleep	Wup	Wake up
•	•	Xsec	Cross-section

- 20 -

4 Conformance

Claiming conformance to this specification shall require the provision of a model implementation conformance statement (MICS) document identifying the standard data object model elements supported by the system or device, as specified in IEC 61850-10.

5 Logical nodes for DER management systems

5.1 Overview of information modelling (informative)

5.1.1 Data information modelling constructs

Data information models provide standardized names and structures to the data that is exchanged among different devices and systems. Figure 3 illustrates the object hierarchy used for developing IEC 61850 information models.

Figure 3 – Information model hierarchy

The process from the bottom up is described below:

- a) Standard data types: common digital formats such as Boolean, integer, and floating point.
- b) Common attributes: predefined common attributes that can be reused by many different objects, such as the quality attribute. These common attributes are defined in Clause 6 of IEC 61850-7-3.
- c) Common data classes (CDCs): predefined groupings building on the standard data types and predefined common attributes, such as the single point status (SPS), the measured value (MV), and the controllable double point (DPC). In essence, these CDCs are used to define the type or format of data objects. These CDCs are defined in IEC 61850-7-3 or in Clause 9 of this document. All units defined in the CDCs shall conform to the SI units (international system of units) listed in IEC 61850-7-3.
- d) Data objects (DO): predefined names of objects associated with one or more logical nodes. Their type or format is defined by one of the CDCs. They are listed only within the logical nodes. An example of a DO is "Auto" defined as CDC type SPS. It can be found in a number of logical nodes. Another example of a DO is "RHz" defined as a SPC (controllable single point), which is found only in the RSYN logical node.
- e) Logical nodes (LN): predefined groupings of data objects that serve specific functions and can be used as "bricks" to build the complete device. Examples of LNs include MMXU which provides all electrical measurements in 3-phase systems (voltage, current, watts, vars, power factor, etc.); PTUV for the model of the voltage portion of under voltage protection; and XCBR for the short circuit breaking capability of a circuit breaker. These LNs are described in Clause 5 of IEC 61850-7-4.
- f) Logical devices (LD): the device model composed of the relevant logical nodes for providing the information needed for a particular device. For instance, a circuit breaker could be composed of the logical nodes: XCBR, XSWI, CPOW, CSWI, and SMIG. Logical devices are not directly defined in any of the documents, since different products and different implementations can use different combinations of logical nodes for the same logical device.

5.1.2 Logical devices concepts

Controllers or servers contain the IEC 61850 logical device models needed for managing the associated device. These logical device models consist of one or more physical device models as well as all of the logical nodes needed for the device.

Therefore a logical device server can be diagrammed as shown in Figure 4.

- 22 -

Figure 4 – Example of relationship of logical device, logical nodes, data objects, and common data classes

5.1.3 Logical nodes structure

The logical nodes (LNs) for DER devices are defined in the tables found in Clauses 5 to 8. For each LN implemented, all mandatory items shall be included (those indicated as an M in the M/O/C column). For clarity, these LNs are organized by typical logical devices that they may be a part of, but they may be used or not used as needed. The organization of IEC 61850 DER information models is illustrated in Figure 5. This illustration does not include all LNs that might be implemented, nor all possible configurations, but exemplifies the approach taken to create information models.

5.1.4 Naming structure

NOTE This is extracted from IEC 61850-7-2 Edition 2 (to be published) for informative purposes only – if any conflict is found, the original must be considered the definitive source.

The ObjectReference the various paths through a data object shall be:

LDName/LNName.	
DataObjectName[.SubDataObjectName[]].	
DataAttributeName[(NumArrayElement)][.SubDataAttributeName[]]	

The following naming conventions (structure, lengths and character set) for object names and object references shall apply:

LDName < 64 characters, application specific

LNName	= [LN-Prefix] LN class name [LN-Instance-ID]
— LN-Prefix	= m characters (application specific); it may start with any character
 — LN class name 	= 4 characters (for example, compatible logical node name as

- LN class name = 4 characters (for example, compatible logical node name as defined in IEC 61850-7-4)
- LN-Instance-ID = n numeric characters (application specific),

o **m+n**

- DataObjectClassName ≤ 10 characters (as, for example, used in IEC 61850-7-4);
 - no DataObjectClassName shall end with a numeric character
- DataObjectName = DataObjectClassName[Data-Instance-ID]

≤ 7 characters

- Data-Instance-ID = n numeric characters, optional; n shall be equal for all instances of the same data class
- FCD ≤ 61 characters including all separators "." (without the value of the FC)
- FCDA ≤ 61 characters including all separators "." (without the value of the FC)
- DataSetName ≤ 52 characters
- CBName = [CB-Prefix] CB class name [CB-Instance-ID]
 CB-Prefix = m characters (application specific)
 CB class name = 4 characters (as defined in this part of the standard)
 CB-Instance-ID = n numeric characters (application specific)
 - o m+n ≤ 7 characters

5.1.5 Interpretation of logical node tables

NOTE This is extracted from IEC 61850-7-4 Edition 2 (to be published) for informative purposes only – if any conflict is found, the original must be considered the definitive source.

The interpretation of the headings for the logical node tables is presented in Table 1.

Column heading	Description
Data object name	Name of the data object
Common data class	Common data class that defines the structure of the data object. See IEC 61850-7-3. For common data classes regarding the service tracking logical node (LTRK), see IEC 61850-7-2.
Explanation	Short explanation of the data object and how it is used.
Т	Transient data objects – the status of data objects with this designation is momentary and must be logged or reported to provide evidence of their momentary state. Some T may be only valid on a modelling level. The TRANSIENT property of DATA OBJECTS only applies to BOOLEAN process data attributes (FC=ST) of that DATA OBJECTS. Transient DATA OBJECT is identical to normal DATA OBJECT, except that for the process state change from TRUE to FALSE no event may be generated for reporting and for logging. For transient data objects, the falling edge shall not be reported if the transient attribute is set to true in the SCL-ICD file. It is recommended to report both states (TRUE to FALSE, and FALSE to TRUE), i.e. not to set the transient attribute in the SCL-ICD file for those DOs, and that the client filter the transitions that are not "desired"
M/O/C	This column defines whether data objects are mandatory (M) or optional (O) or
	conditional (C) for the instantiation of a specific logical hode.
	NOTE The attributes for data objects that are instantiated may also be mandatory or optional based on the CDC (attribute type) definition in IEC 61850-7-3.
	The entry C is an indication that a condition exists for this data object, given in a note under the LN table. The condition decides what conditional data objects get mandatory. C may have an index to handle multiple conditions.

Table 1 – Interpretation of logical node tables

The LN type and the LNName attribute are inherited from logical-node class (see IEC 61850-7-2). The LN class names are individually given in the logical node tables. The LN instance name shall be composed of the class name, the LN-Prefix and LN-Instance-ID according to Clause 19 of IEC 61850-7-2.

All data object names are listed alphabetically in Clause 6 [*applies to IEC 61850-7 only*]. Despite some overlapping, the data objects in the logical nodes classes are grouped for the convenience of the reader into some of the following categories.

a) Data objects without category (Common information)

Data objects without category (Common information) is information independent of the dedicated function represented by the LN class. Mandatory data objects (M) are common to all LN classes i.e. shall be used for all LN classes dedicated for functions. Optional data objects (O) may be used for all LN classes dedicated for functions. These dedicated LN classes show if optional data objects of the common logical node class are mandatory in the LN.

b) Measured values

Measured values are analogue data objects measured from the process or calculated in the functions such as currents, voltages, power, etc. This information is produced locally and cannot be changed remotely unless substitution is applicable.

c) Controls

Controls are data objects which are changed by commands such as switchgear state (ON/OFF), tap changer position or resettable counters. They are typically changed remotely, and are changed during operation much more often than settings.

d) Metered values

Metered values are analogue data objects representing quantities measured over time, e.g. energy. This information is produced locally and cannot be changed remotely unless substitution is applicable.

e) Status information

Status information is a data object, which shows either the status of the process or of the function allocated to the LN class. This information is produced locally and cannot be changed remotely unless substitution is applicable. Data objects such as "start" or "trip" are listed in this category. Most of these data objects are mandatory.

f) Settings

Settings are data objects which are needed for the function to operate. Since many settings are dependent on the implementation of the function, only a commonly agreed minimum is standardised. They may be changed remotely, but normally not very often.

5.1.6 System logical nodes LN Group: L (informative)

NOTE This is extracted from IEC 61850-7-4 Edition 2 (to be published) for informative purposes only – if any conflict is found, the original must be considered the definitive source.

5.1.6.1 General

In this subclause, the system specific information is defined. This includes system logical node data (for example logical node behaviour, nameplate information, operation counters) as well as information related to the physical device (LPHD) implementing the logical devices and logical nodes. These logical nodes (LPHD and common LN) are independent of the application domain. All other logical nodes are domain specific, but inherit mandatory and optional data from the common logical node.

5.1.6.2 LN: Physical device information Name: LPHD

This LN is introduced in this part to model common issues for physical devices. See Table 2.

Table 2 – LPHD class

LPHD Class							
Data object name	Common data class	common lata class					
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data			-				
PhyNam	DPL	Physical device name plate		М			
PhyHealth	ENS	Physical device health		М			
OutOv	SPS	Output communications buffer overflow		0			
Proxy	SPS	Indicates if this LN is a proxy		М			
InOv	SPS	Input communications buffer overflow		0			
NumPwrUp	INS	Number of power ups		0			
WrmStr	INS	Number of warm starts		0			
WacTrg	INS	Number of watchdog device resets detected		0			
PwrUp	SPS	Power up detected		0			
PwrDn	SPS	Power down detected		0			
PwrSupAlm	SPS	External power supply alarm		0			
RsStat	SPC	Reset device statistics		0			
Data sets (see IEC 6	61850-7-2)						
Control blocks (see IEC 61850-7-2)							
Services (see IEC 61850-7-2)							

5.1.6.3 LN: Common logical node Name: Common LN

The common logical node class provides data which are mandatory or conditional to all dedicated LN classes. It also contains data which may be used in all dedicated logical node classes like input references and data for the statistical calculation methods. See Table 3.

Table 3 – Common LN class

Common LN Class						
Data object name	Common data class	xplanation				
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)				
Data						
Mandatory logical	node inform	ation (Shall be inherited by ALL LN except LPHD)				
Mod	ENC	Mode		С		
Beh	ENS	Behaviour		М		
Health	ENS	Health		C1		
NamPlt	LPL	Name plate		C1		
Optional logical no	de informat	ion (May be inherited)				
InRef1	ORG	General input		0		
BlkRef1	ORG	Block reference show the receiving of dynamically blocking signal		0		
Blk	SPS	Dynamically blocking of function described by the LN		0		
CmdBlk	SPC	Blocking of control sequences of controllable data objects		C2		
ClcExp	SPS	Calculation period expired	Т	0		
ClcStr	SPC	Start calculation at time operTmh (if set) or immediately		0		
ClcMth	ENG	Calculation Method of statistical data. Allowed values PRES MIN MAX AVG SDV TREND RATE		C3		
CICMod	ENG	Calculation mode. Allowed values: TOTAL PERIOD SLIDING		0		
CLCIntvTyp	ENG	Calculation interval type. Allowed values: ANYTIME CYCLE PER_CYCLE HOUR DAY WEEK		0		
ClcPerms	ING	Calculation period in milliseconds. If ClcIntvTyp is equal ANYTIME Calculation Period shall be defined.		0		
ClcSrc	ORG	Object reference to source logical node		0		
СІсТур	ENS	Calculation type		С		
GrRef	ORG	Reference to a higher level logical device		0		
Data sets (see IEC 61850-7-2)						
Control blocks (see IEC 61850-7-2)						
Services (see IEC 61850-7-2)						

5.1.6.4 LN: Logical node zero Name: LLN0

This LN shall be used to address common issues for Logical Devices. See Table 4.

LLN0 Class						
Data object name	Common data class	Explanation	Т	M/O/C		
LNName		hall be inherited from logical-node class (see IEC 61850-7-2)				
Data						
LocKey	SPS	Local operation for complete logical device		0		
RemCtlBlk	SPC	SPC remote control blocked		0		
LocCtlBeh	SPS	SPS Local control behaviour		0		
OpTmh	INS	peration time				
Controls						
Diag	SPC	Run diagnostics		0		
LEDRs	SPC	.ED reset		0		
Settings						
MltLev	SPG	Select mode of authority for local control (True – control from multiple levels above the selected one is allowed, False – no other control level above allowed)		0		

Table 4 – LLN0 class

5.1.7 Overview of DER management system LNs

Figure 5 shows a conceptual view of the logical nodes which could be used for different parts of DER management systems.

Overview: Logical Devices and Logical Nodes for Distributed Energy Resource (DER) Systems

Figure 5 – Overview: Conceptual organization of DER logical devices and logical nodes

5.2 Logical nodes for the DER plant ECP logical device

5.2.1 DER plant electrical connection point (ECP) logical device (informative)

The DER plant electrical connection point (ECP) logical device defines the characteristics of the DER plant at the point of electrical connection between one or more DER units and any electric power system (EPS), including isolated loads, microgrids, and the utility power system. Usually there is a switch or circuit breaker at this point of connection.

ECPs can be hierarchical. Each DER (generation or storage) unit has an ECP connecting it to its local power system; groups of DER units have an ECP where they interconnect to the power system at a specific site or plant; a group of DER units plus local loads have an ECP where they are interconnected to the utility power system.

In a simple DER configuration, there is one ECP between a single DER unit and the utility power system. However, as shown in Figure 6, there may be more ECPs in a more complex DER plant installation. In this figure, ECPs exist between:

- each single DER unit and the local bus;
- each group of DER units and a local power system (with load);
- multiple groups of DER units and the utility power system.

 \mathbf{X} = Electrical Connection Point (ECP)

Figure 6 – Illustration of electrical connection points (ECP) in a DER plant

The ECP between a local DER power system and a utility power system is defined as the point of common coupling (PCC) in the IEEE 1547 "*Standard for Interconnecting Distributed Resources with Electric Power Systems*". Although typically the PCC is the electrical connection between a utility and a non-utility DER plant, this is not always true: the DER plant may be owned/operated by a utility, and/or the EPS may be owned/operated by a non-utility entity, such as a campus power system or building complex.

DER systems have economic dispatch parameters related to their operations which are important for efficient operations, and will increasingly be used directly or indirectly in market operations, including demand response, real-time pricing, advanced distribution automation, and bidding into the auxiliary services energy marketplace.

Examples of installations with multiple ECPs include the following.

- One DER device is connected only to a local load through a switch. The connection point is the ECP.
- Groups of similar DER devices are connected to a bus which feeds a local load. If the group is always going to be treated as a single generator, then just one ECP is needed where the group is connected to the bus. If there is a switch between the bus and the load, then the bus has an ECP at that connection point.
- Multiple DER devices (or groups of similar DER devices) are each connected to a bus. That bus is connected to a local load. In this case, each DER device/group has an ECP at its connection to the bus. If there is a switch between the bus and the load, then the bus has an ECP at that connection point.
- Multiple DER devices are each connected to a bus. That bus is connected to a local load. It is also connected to the utility power system. In this case, each DER device has an ECP at its connection to the bus. The bus has an ECP at its connection to the local load. The bus also has an ECP at its connection to the utility power system. This last ECP is identical to the IEEE 1547 PCC.

ECP logical devices would include the following logical nodes as necessary for a particular installation. These LNs may or may not actually be implemented in an ECP logical device, depending upon the unique needs and conditions of the implementation. However, these LNs handle the ECP issues:

- DCRP: DER plant corporate characteristics at each ECP, including ownership, operating authority, contractual obligations and permissions, location, and identities of all DER devices connected directly or indirectly at the ECP.
- DOPR: DER plant operational characteristics at each ECP, including types of DER devices, types of connection, modes of operation, combined ratings of all DERs at the ECP, power system operating limits at the ECP.
- DOPA: DER operational control authorities at each ECP, including the authority to open the ECP switch, close the ECP switch, change operating modes, start DER units, stop DER units. This LN could also be used to indicate what permissions are currently in effect.
- DOPM: DER operating mode at each ECP. This LN can be used to set available operating modes as well as actual operating modes.
- DPST: Actual status at each ECP, including DER plant connection status, alarms.
- DCCT: Economic dispatch parameters for DER operations.
- DSCC: Control of energy and ancillary services schedules.
- DSCH: Schedule for DER plant to provide energy and/or ancillary services.
- XFUS, XCBR, CSWI: Switch or breaker at each ECP and/or at the load connection point (see IEC 61850-7-4).
- MMXU: Actual power system measurements at each ECP, including (as options) active power, reactive power, frequency, voltages, amps, power factor, and impedance as total and per phase (see IEC 61850-7-4).
- MMTR: Interval metering information at each ECP (as needed), including interval lengths, readings per interval (see IEC 61850-7-4, including statistical and historical statistical values).

5.2.2 LN: DER plant corporate characteristics at the ECP Name: DCRP

This logical node defines the corporate and contractual characteristics of a DER plant. A DER plant in this context is defined as one DER unit and/or a group of DER units which are connected at an electrical connection point (ECP). The DCRP LN can be associated with each ECP (e.g. with each DER unit and a group of DER units) or just those ECPs where it is appropriate.

The DCRP LN includes the DPL (device nameplate) information of ownership, operating authorities, and location of the ECP, and also provides contractual information about the ECP: plant purpose, contractual obligations, and contractual permissions. It is expected that only yes/no contractual information needed for operations will be available in this LN. See Table 5.

DCRP class						
Data object name	Common data class	xplanation		M/O/C		
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)				
Data						
System logica	l node data					
		LN shall inherit all mandatory data from common logical node class		М		
		The data from LLN0 may optionally be used		0		
Settings						
PIntObISelf	SPG	Plant purpose/obligations at the ECP – True = run passively or whenever possible (e.g. photovoltaics, wind)		0		
PIntOblBck	SPG	Plant purpose/obligations at the ECP – True = for backup		0		
PIntObIMan	SPG	Plant purpose/obligations at the ECP – True = manual operations		0		
PIntObIMrk	SPG	Plant purpose/obligations at the ECP – True = market-driven		0		
PIntObIUtil	SPG	Plant purpose/obligations at the ECP – True = utility operated		0		
PIntOblEm	SPG	Plant purpose/obligations at the ECP – True = emission-limited		0		

Table 5 – DER plant corporate characteristics at the ECP, LN (DCRP)

5.2.3 LN: Operational characteristics at ECP Name: DOPR

This logical node contains the operational characteristics of the combined group of DER units connected at the ECP, including the list of physically connected DER units, the status of their electrical connectivity at this ECP, the type of ECP, the modes of ECP operation, combined ratings of all DERs at ECP, and power system operating limits at ECP. See Table 6.

				DOPR class			
Data object name	Common data class	Expla	Explanation				
LNName		Shall	Shall be inherited from logical-node class (see IEC 61850-7-2)				
Data		•					
System logical no	ode data						
		LN sh	all inherit	all mandatory data from common logical node class		М	
		The d	ata from L	LN0 may optionally be used		0	
Status							
ECPID	ING	Identi	tv of ECP		1		
			· · · ·				
		Туре	of ECP				
			Value	Explanation			
			0	Not applicable / Unknown			
			1	Connection of one DER to local load			
FCPType	ENS		2	Connection of group of DERs to local EPS		м	
		-	3	Connection of local EPS with local load to			
			-	area EPS (PCC)			
			4	Connection of local EPS without local load			
			00	to area EPS (PCC)			
			99	Other			
InCctID	ING	Circui	Circuit Id of generation source at ECP			0	
OutCctID	ING	Circui	it Id of non	-generation (load) at ECP		0	
	ENS	Type	of circuit p	hases.			
		. , , , , ,	Value	Explanation			
			0	Not applicable / Unknown			
			1	single phase			
CctPhs			2	3 phase		0	
			3	Delta			
			4	Wve			
			5	Wye-grounded			
			99	Other			
Settings						<u> </u>	
ECPNomWRta	ASG	Nomi	nal, min, a	nd max aggregated DER watts rating at ECP		0	
ECPNomVarPtg	ASG	Nomi	Nominal, min, and may aggregated DER watter taking at ECP			0	
ECDNom//Lov	ASG	Nomi				0	
	100	Nemi		ad max fraguenay at ECD	-		
ECPNomHz	ASG	INOMI	nominal, min, and max frequency at ECP				

Table 6 – Operational characteristics at the ECP, LN (DOPR)

5.2.4 LN: DER operational authority at the ECP Name: DOPA

This Logical Node is associated with role based access control (RBAC) and indicates the authorized control actions that are permitted for each "role", including authority to disconnect the ECP from the power system, connect the ECP to the power system, change operating modes, start DER units, and stop DER units. This LN could also be used to indicate what permissions are in effect. One instantiation of this LN should be established for each "role" that could have operational control. The possible types of roles are outside the scope of this standard. See Table 7.

DOPA class								
Data object name	Common data class	Explana	Explanation					
LNName		Shall be	inherited f	rom logical-node class (see IEC 61850-7-2)				
Data		•						
System logical	node data							
		LN sha	ll inherit all	mandatory data from common logical node class		М		
		The Dat	a from LLN	0 may optionally be used		0		
Settings		1			-	1		
DERAuth	VRY	List of th this auth	ist of the MRIDs of the DER units at this ECP which are covered by					
ECPOpnAuth	SPG	Authoriz	ed to disco	nnect the ECP from power system		0		
ECPCIsAuth	SPG	Authoriz	Authorized to connect the ECP to the power system					
ECPModAuth	SPG	Authoriz ECP	Authorized to change operating mode of DER plant connected to ECP					
DERStrAuth	SPG	Authoriz	Authorized to start DER units connected to this ECP					
DERStpAuth	SPG	Authoriz	Authorized to stop DER units connected to the ECP					
DEROpMode	ERY	List of a	uthorized o Value 0 1 2 3 4 5 6 7 99	Perational modes: Explanation Not applicable / Unknown Driven by energy source Constant W Constant voltage Constant vars Constant PF Constant Export / Import Maximum vars Other		0		

Table 7 – DER operational authority at the ECP, LN (DOPA)

5.2.5 LN: Operating mode at ECP Name: DOPM

This logical node provides settings for the operating mode at the ECP. This LN can be used to set available operating modes as well as to set actual operating modes. More than one mode can be set simultaneously for certain logical combinations. For example:

- PV designates both constant watts and constant voltage modes;
- PQ designates both constant active power and constant reactive power modes;
- PF with voltage override mode designates both constant power factor and constant voltage modes;
- Constant watts and vars mode designates both constant watts and constant vars modes.

It is assumed that a DER management system will then take whatever actions are necessary to set the DER units appropriately so that the ECP maintains the operating mode that has been set. See Table 8.

DOPM class						
Data object name	ect name Common data class Explanation					
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)				
Data						
System logical node	e information					
		LN shall inherit all mandatory data from common logical node class		М		
		The data from LLN0 may optionally be used		0		
Controls			_			
OpModPM	SPC	Mode of operation – driven by energy source (e.g. solar, water flow) so generation level is constrained by availability of that energy source		ο		
OpModConW	SPC	Mode of operation – constant watts		0		
OpModConV	SPC	Mode of operation – constant voltage		0		
OpModConVar	SPC	Mode of operation – constant vars		0		
OpModConPF	SPC	Mode of operation – constant power factor		0		
OpModExIm	SPC	Mode of operation – constant export/import		0		
OpModMaxVar	SPC	Mode of operation – maximum vars		0		
OpModVOv	SPC	Mode of operation – voltage override		0		
OpModPk	SPC	Mode of operation – peak load shaving		0		
OpModIsId	SPC	Mode of operation – islanded at the ECP		0		

Table 8 – Operating mode at the ECP, LN (DOPM)

5.2.6 LN: Status information at the ECP Name: DPST

This logical node provides the real-time status and measurements at the ECP, including connection status of ECP and accumulated watt-hours.

The active modes of operation are handled by the LN DOPM, the actual power system measurements at the ECP are handled by the LN MMXU, and control of connectivity at ECP is either a manual action or handled by LNs XCBR and CSWI. See Table 9.
DPST class							
Data object name	Common data class	Explana	Explanation			M/O/C	
LNName		Shall be	shall be inherited from logical-node class (see IEC 61850-7-2)				
Data							
System logical node	informatio	n					
		LN shal	hall inherit all mandatory data from common logical node class				
OpTms	INS	Operatio	perational time since commissioning				
		Other d	Other data from LLN0 may optionally be used				
Status information		•					
		Connec	tion of DEF	R plant at ECP			
E C D C ann	000		Value	Explanation		5.4	
ECPCONN	323		True	Electrically connected at ECP		IVI	
			False	Not electrically connected at ECP			
Measured values						L	
TotWh	BCR	Total wa	att-hours at	ECP since last reset		0	

Table 9 – Status at the ECP, LN (DPST)

5.2.7 LN: DER economic dispatch parameters Name: DCCT

The following logical node defines the DER economic dispatch parameters. Each DCCT is associated with one or more ECPs. See Table 10.

Table 10 – DER Economic dispatch parameters, LN (DCCT)

DCCT class							
Data object name	Common data class	Explanation	Т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical no	de data						
		LN shall inherit all mandatory data from common logical node class		М			
		Data from LLN0 may optionally be used		0			
Settings							
Currency	CUG	ISO 4217 currency 3-character code		М			
CnttExpWLim	ASG	Contractual limit on export energy		0			
CnttImpWLim	ASG	Contractual limit on import energy		0			
CnttPF	ASG	Contractual power factor to be provided by DER		0			
CnttHiV	ASG	Contractual voltage high limit		0			
CnttLoV	ASG	Contractual voltage low limit		0			

- 35 -

DCCT class							
Data object name	Common data class	Explan	ation		Т	M/O/C	
CnttAncil	ING	Ability t	o provide a Value 0 1 2 3 4 5 99	ExplanationNot applicable / UnknownLoad followingImmediate reserveOperational reserveBase loadBlack startOther		0	
OpCost	CUG	Margina	al operatio	nal cost per hour		М	
OpWCost	CUG	Margina	al operatio	nal cost per kWh		М	
StrCost	CUG	Cost to	start up D	ER		М	
StopCost	CUG	Cost to	stop DER			М	
RampCost	CUG	Cost to	ost to ramp DER per kW per minute			0	
HeatRteCost	SCR	Increme	ental heat	rate piecewise linear curve costs		0	
CarbRteCost	SCR	Increme	ental carbo	on emission curve costs		0	

5.2.8 LN: DER energy and/or ancillary services schedule control Name: DSCC

The following logical node controls the use of DER energy and ancillary services schedules. Each DSCC is associated with one or more ECPs. Time activated control shall be used to establish the start time for schedules using relative time and if the start time is in the future. See Table 11.

DSCC class							
Data object name	Common data class	Explanation	т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical nod	e data						
		LN shall inherit all mandatory data from common logical node class		М			
		Data from LLN0 may optionally be used		0			
Status information	Status information						
ActWSchdSt	INS	Indication of which energy schedule is active – schedule 0 indicates no schedule		М			
ActAncSchdSt	INS	Indication of which ancillary services schedule is active – schedule 0 indicates no schedule		М			
Controls	-		<u>.</u>				
ActWSchd	SPC	Activate specific energy schedule, using TimeActivatedOperate to establish start time for schedules using relative time and if start time is in the future. ctrVal: 0 = deactivate, 1 = activate		М			

Table 11 – DER energy schedule control, LN (DSCC)

DSCC class								
Data object name	Common data class	Explanation	Т	M/O/C				
ActAncSchd	SPC	Activate specific ancillary services schedule, using TimeActivatedOperate to establish start time for schedules using relative time and if start time is in the future. ctrVal: 0 = deactivate, 1 = activate		М				

5.2.9 LN: DER energy and/or ancillary services schedule Name: DSCH

The following logical node defines a DER energy and/or ancillary services schedule. Multiple schedules can be defined, using DSCC LN to control which ones are active. Each DSCH is associated with one or more ECPs. See Table 12.

			DS	CH class					
	Common	i			Т				
Data object nam	data class	Explana	cplanation						
LNName		Shall be	inherited	from logical-node class (see IEC 61850-7-2)					
Data									
System logical i	node data								
		LN shall	inherit all	mandatory data from common logical node class		М			
		Data fro	ata from LLN0 may optionally be used						
Status informati	ion	I			1	1			
SchdSt	INS	Indicatio	on that this	schedule has been activated		М			
Settings	J	<u> </u>			1				
 SchdId	ING	Non-zer	o identity (of the schedule		М			
		Categor	y of sched	ule:					
		-	value	Not applicable / Upknown					
			1	Regular		l			
SchdCat	ING	-	2	Backup		М			
		-	3	Emergency		ĺ			
		-	4	Maintenance		ĺ			
		-	99	Other					
		Type of schedul	schedule, e will be us Value	identifying the operating mode under which the sed:	•				
		-	0	Not applicable / Unknown		ĺ			
			1	Energy					
			2	Contingency reserve "spinning"		l			
		-	3	Contingency reserve supplemental		l			
SchdTyp	ING		4	Emergency reserve		М			
		-	5	Emission reserve		l			
			6	Energy balancing		l			
			7	Reactive power					
			8	Black start					
			9	Emergency islanding					
			99	Other					

Table 12 – DER Energy and ancillary services schedule, LN (DSCH)

DSCH class								
Data object name	Common data class	Explan	xplanation			M/O/C		
SchdAbsTm	SCA	Array o time, st	ay of energy targets for each schedule period using absolute le, starting at zero (UTC epoch)					
SchdRelTm	SCR	Array o time off	ray of energy targets for each schedule period using relative ne offsets					
		Meanin	g of the va Value	I parameter in the SCA or SCR: Explanation				
			0	Not applicable / Unknown				
			1	Active power				
			2	Reactive power				
SchdVal	ING		3	Power factor				
			4	Voltage				
			5	Price for active power				
			6	Price for reactive power				
			7	Heat				
			99	Other				
Fither C1 or C2 sha	ll be used bi	ut not bo	th			1		

5.3 Logical nodes for the DER unit controller logical device

5.3.1 DER device controller logical device (informative)

The DER device controller logical device defines the operational characteristics of a single DER device, regardless of the type of generator or prime mover.

This DER device can contain the following logical nodes:

- DRCT: DER unit controller characteristics, including what type of DER, electrical characteristics, etc.,
- DRCS: DER unit status,
- DRCC: DER unit control actions,
- MMXU: DER self serve active and reactive power measurements,
- CSWI: switch opening and closing between DER unit and power system.

5.3.2 LN: DER controller characteristics Name: DRCT

The DER controller logical node defines the control characteristics and capabilities of one DER unit or aggregations of one type of DER device with a single controller. See Table 13.

Table 13 – DER controller characteristics, LN DRCT

DRCT class								
Data object name	Common data class	Explanation	Т	M/O/C				
LNName		hall be inherited from logical-node class (see IEC 61850-7-2)						
Data								
System logical node	data							
		LN shall inherit all mandatory data from common logical node class		М				
		Data from LLN0 may optionally be used		0				

DRCT class							
Data object name	Common data class	Explan	xplanation			M/O/C	
Settings							
DERNum	ING	Numbe	r of DER ur	nits connected to controller		М	
		Type of	DER unit:				
			Value	Explanation			
			0	Not applicable / Unknown			
	ING		1	Virtual or mixed DER			
DERtyp			2	Reciprocating engine		M	
			3				
			4	Photovoltaic system			
			5	Combined neat and power			
			99	Other			
MaxWLim	ASG	Nomina	I max outp	ut power		М	
MaxVarLim	ASG	Nomina	I max outp	ut reactive power		М	
StrDITms	ING	Nomina	Iominal time delay before starting or restarting				
StopDITms	ING	Nomina	l time dela	y before stopping		М	
LodRampRte	ING	Nomina	I ramp load	d or unload rate, power versus time		М	

5.3.3 LN: DER controller status Name: DRCS

The DER controller logical node defines the control status of one DER unit or aggregations of one type of DER device with a single controller. See Table 14.

Table 14 –	DER	controller	status,	LN	DRCS
------------	-----	------------	---------	----	------

DRCS class							
Data object name	Common data class	Explanation	xplanation				
LNName		Shall be inherited fro	hall be inherited from logical-node class (see IEC 61850-7-2)				
Data	•						
System logical nod	le data						
		LN shall inherit all m	nandatory data from common logical node class		М		
OpTmh	INS	Operation time	peration time				
		Other data from LLN	Other data from LLN0 may optionally be used				
Status information							
ECPConn	SPS	Electrically connecte Value True False	ed to the ECP that it is physically connected to: Explanation Electrically connected Not connected		М		
AutoMan	SPS	Automatic or manua Value True False	l mode: Explanation Automatic Manual		М		

DRCS class					
Data object name	Common data class	Explanation	Т	M/O/C	
Loc	SPS	Remote or local mode:ValueExplanationFalseLocalTrueRemote is allowed		М	
ModOnConn	SPS	Operational mode - True: On and connected		М	
ModOnAval	SPS	Operational mode - True: On and available for connection		М	
ModOnUnav	SPS	Operational mode - True: On but not available for connection		0	
ModOffAval	SPS	Operational mode - True: Off but available to start		М	
ModOffUnav	SPS	Operational mode - True: Off and not available to start		М	
ModTest	SPS	Operational mode - True: Test mode		0	
ModStr	SPS	Operational mode - True: Starting up		0	
ModStop	SPS	Operational mode - True: Stopping/shutting down		0	
SeqSt	INS	Status of the sequencer		0	
SeqPos	INS	Sequence active position or step		0	
LodModBase	SPS	Load mode – True: Base load		0	
LodModFol	SPS	Load mode – True: Load following		0	
LodModFxExp	SPS	Load mode – True: Fixed export		0	
LodModAval	SPS	Load mode – True: Available		0	
DCPowStat	SPS	DC power status: Value Explanation True Power on False Power not on		0	
Measured values	н 				
FltRatePct	MV	Fault rates of DER as percent		0	
SelfServWh	M∨	Actual self service energy used		0	

5.3.4 LN: DER supervisory control Name: DRCC

The DER supervisory control logical node defines the control actions for one DER unit or aggregations of one type of DER device with a single controller. See Table 15.

	DRCC class						
Data object name	Common data class	Explanation	Т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical node data							
		LN shall inherit all mandatory data from common logical node class		М			

Table 15 – DER supervisory control, LN DRCC

DRCC class					
Data object name	Common data class	Explanation	Т	M/O/C	
		Data from LLN0 may optionally be used		0	
Controls	-				
DeRtePct	APC	Derated load target as percent		0	
OutWSet	APC	Output target power setpoint		0	
OutVarSet	APC	Output target reactive power setpoint		0	
ImExSet	APC	Setpoint for maintaining constant import/export energy at ECP		0	
OutPFSet	APC	Setpoint for maintaining fixed power factor: negative power factor is leading and positive power factor is lagging		0	
OutHzSet	APC	Setpoint for maintaining fixed frequency offset		0	
OutVSet	APC	Voltage setpoint for maintaining fixed voltage level in percent offset		0	
StrDITms	ING	Time delay before starting		0	
StopDITms	ING	Time delay before stopping		0	
MaxVarLim	APC	Derated max output reactive power		0	
LodRamp	APC	Ramp load or unload rate		0	
LodShutDown	APC	Load shut down: Stop/Do not stop		0	
LodSharRamp	APC	Load share/Do not share		0	
LodWPct	APC	Percent load power		0	
DERStr	SPC	True = Start DER unit or sequencer		М	
DERStop	SPC	True = Stop DER unit or sequencer		М	
GnSync	SPC	True = Starts synchronizing generator to EPS		0	
EmgStop	DPC	Remote emergency stop		0	
FltAck	SPC	True = Acknowledge fault clearing		0	
AutoManCtl	SPC	Sets operations mode to automatic or manual: Value Explanation On Automatic Off Manual		М	
LocRemCtl	SPC	Sets operations mode to remote or local: Value Explanation 0 Remote 1 Local		М	
OpModAval	SPC	Sets operational mode: True = is available		0	
OpModOff	SPC	Sets operational mode: True = off-line		0	
OpModTest	SPC	Sets operational mode: True = test mode		0	
LodModBase	SPC	Sets "base load": True = load mode		0	
LodModFol	SPC	Sets "load following": True = load mode		0	
LodModFxExp	SPC	Sets "fixed export": True = load mode		0	

DRCC class						
Data object name	Common data class	Explanation	Т	M/O/C		
LodModAval	SPC	Sets "available": True = for connection to load		0		
DCPowStat	SPC	True = DC power control		0		
OpTmRs	SPC	True = Reset operational time		0		

6 Logical nodes for DER generation systems

6.1 Logical nodes for DER generation logical device

6.1.1 DER generator logical device (informative)

Each non-storage DER unit has a generator. Although each type of DER unit provides different prime movers for its generator, thus requiring different prime mover logical nodes, the general operational characteristics of these generators are the same across all DER types. Therefore, only one DER generator model is required.

The DER generator logical device describes the generator characteristics of the DER unit. These generator characteristics can vary significantly, depending upon the type of DER device.

The LNs in the DER generator logical device could include:

- DGEN: DER generator operations,
- DRAT: DER basic generator ratings,
- DRAZ: DER advanced generator features,
- DCST: Costs associated with generator operations,
- RSYN: Synchronization (see IEC 61850-7-4 with expected enhancements),
- FPID: PID regulator (see IEC 61850-7-410).

6.1.2 LN: DER unit generator Name: DGEN

The DER unit generator logical node defines the actual state of DER generator. See Table 16.

DGEN class						
Data object name	Common data class	Explanation	Н	M/O/C		
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)				
Data						
System logical nod	e data					
		LN shall inherit all mandatory data from common logical node class. The following optional data may be used		М		
OpTmh	INS	Operation time		М		
		Other data from LLN0 may optionally be used		0		
Status information		· · · · · · · · · · · · · · · · · · ·				

Table 16 – DER unit generator, LN (DGEN)

			DG	BEN class		
Data object name	Common data class	Explana	tion		Т	M/O/C
		Generati	on operat	ional state:		
			Value	Explanation		
			0	Not applicable / Unknown		
			1	Not operating		
			2	Operating		
GnOpSt	ENS		3	Starting up		М
			4	Shutting down		
			5	At disconnect level		l
			6	Ramping (power)		
			7	Ramping (reactive power)		
			99	Other		
		Generato	or is syncl	hronized to EPS, or not		
CoSupa	ene		Value	Explanation		
GhSync	353		True	Synchronized		0
			False	Not synchronized		
		Parallelir	ng status:			
Devict	0.50		Value	Explanation		
Parist	SPS		True	Paralleling		0
			False	Standby		
		Ramp Load/Unload Switch:		d Switch:		
	SPS		Value	Explanation		
RampLodSw			True	Ramp load		0
			False	Ramp unload		
		DC Powe	er On/Off	Status:		
	SPS		Value	Explanation		
DCPowSt			True	DC power on		0
			False	DC power off		
OpTmsRs	INS	Total tim since the	e generat a last time	tor has operated – re-settable: accumulated time the counter was reset		М
GnOnCnt	INS	The num of "genei	ber of tim rator on" t	tes that the generator has been turned on: count times, since the last time the counter was reset		0
Measured values						
TotWh	MV	Total ene	ergy deliv	ered		М
PerWh	MV	Energy ii	n period s	ince last reset		0
TotStrCnt	BCR	Count of	total num	nber of starts		0
PerStrCnt	BCR	Count of	starts in	period since reset		0
GnOpTm	MV	Elapsed comman max = m	time as th d was issi aximum ti	ne generator becomes ready after the GenOnOff ued ime before issuing a start-failure alarm		ο
GnStbTm	MV	Timer for stabilizat	r stabiliza tion-failur	tion time; max = maximum time before issuing a e alarm		0
GnCoolDnTm	MV	Timer for down	r generato	or to cool down; min = minimum time for cool		0
AVR	MV	Automati	ic voltage	regulator percent duty cycle		0

DGEN class						
Data object name	Common data class	Explanation	Т	M/O/C		
GnH	НМ∨	Generator harmonics		0		
Controls						
GnCtl	DPC	Starts or stops the generator: Start = True, Stop = False, other states indicate error condition		0		
GnRL	DPC	Raises or lowers the generation level by steps: Raise = True, Lower = False, other states indicate error condition		0		
GnBlk	SPC	Set generator as blocked: True = blocked from being turned on		0		

6.1.3 LN: DER generator ratings Name: DRAT

The following logical node defines the DER basic generator ratings. These are established as status objects since they are not expected to be remotely updated except through the use of the system configuration language or other direct intervention. See Table 17.

Table 17 – DEF	R Basic	Generator	ratings,	LN ((DRAT))
----------------	---------	-----------	----------	------	--------	---

Data object name Common data class Explanation T M/O/C LNName Shall be inherited from logical-node class (see IEC 61850-7-2) I I Data System logical node data I I M/O/C System logical node data Inherit all mandatory data from common logical node class M Data from LLN0 may optionally be used I O Status Type of DER generator: Value Explanation I Disel/gas engine M DERTyp ENS ENS Stirling engine 3 Stirling engine M M				DR	AT class				
LNName Shall be inherited from logical-node class (see IEC 61850-7-2) Data System logical node data LN shall inherit all mandatory data from common logical node class M Data from LLN0 may optionally be used O Status Type of DER generator: Value Explanation Value Explanation M M DERTyp ENS Type of DER generator: M Q Not applicable / Unknown M M DERTyp ENS Type of DER generator: M	Data object name	Common data class	Explana	lanation					
Data System logical node data LN shall inherit all mandatory data from common logical node class M Data from LLN0 may optionally be used O Status Type of DER generator: Value Explanation 0 Not applicable / Unknown 1 Diesel/gas engine 2 Turbine engine 3 Stirling engine 4 Storage 5 PV 6 Fuel cell	LNName		Shall be	be inherited from logical-node class (see IEC 61850-7-2)					
System logical node data LN shall inherit all mandatory data from common logical node class M Data from LLN0 may optionally be used O Status Type of DER generator: Value Explanation 0 Not applicable / Unknown 1 Diesel/gas engine 2 Turbine engine 3 Stirling engine 4 Storage 5 PV 6 Fuel cell	Data	•	•				•		
LN shall inherit all mandatory data from common logical node class M Data from LLN0 may optionally be used O Status Type of DER generator: Value Explanation 0 Not applicable / Unknown 1 Diesel/gas engine 2 Turbine engine 3 Stirling engine 4 Storage 5 PV 6 Fuel cell	System logical noo	le data							
Data from LLN0 may optionally be used O Status Type of DER generator: Value Explanation 0 Not applicable / Unknown 1 Diesel/gas engine 2 Turbine engine 2 Turbine engine 3 Stirling engine 4 Storage 5 PV 6 Fuel cell			LN shal	l inherit all	mandatory data from common logical node class		М		
Status DERTyp ENS Type of DER generator: Value Explanation 0 Not applicable / Unknown 1 Diesel/gas engine 2 Turbine engine 3 Stirling engine 4 Storage 5 PV 6 Fuel cell			Data fro	m LLN0 m	ay optionally be used		0		
DERTyp ENS Type of DER generator: Value Explanation 0 Not applicable / Unknown 1 Diesel/gas engine 2 Turbine engine 4 Storage 5 PV 6 Fuel cell 22 Duble	Status	1	ļ						
DERTyp ENS ENS ENS			Turne of		rotori				
DERTyp ENS			Type of	DER gene	rator:				
DERTyp ENS				value	Explanation				
DERTyp ENS ENS ENS ENS ENS ENS ENS ENS ENS MARKET Diesel/gas engine 1 Diesel/gas engine 2 Turbine engine 3 Stirling engine 4 Storage 5 PV 6 Fuel cell		ENS		0					
DERTyp ENS ENS 2 Turbine engine M 3 Stirling engine 4 4 Storage 5 PV 6 Fuel cell				1	Diesel/gas engine				
3 Stirling engine 4 Storage 5 PV 6 Fuel cell	DERTyp			2	Stirling ongine		М		
5 PV 6 Fuel cell	51			3	Stirring engine				
6 Fuel cell				4	Storage				
				5					
				6					
99 Other				99	Other				
Type of connection: 3-phase or single phase, delta, wye			Type of	connectior	n: 3-phase or single phase, delta, wye				
Value Explanation				Value	Explanation				
0 Not applicable / Unknown				0	Not applicable / Unknown				
1 Single phase				1	Single phase				
2 Split phase				2	Split phase				
3 2-phase				3	2-phase				
ConnTyp ENS 4 3-phase delta M	ConnTyp	ENS		4	3-phase delta		М		
5 3-phase wye				5	3-phase wye				
6 3-phase wye grounded				6	3-phase wye grounded				
7 3-phase / 3-wire (inverter type)				7	3-phase / 3-wire (inverter type)				
8 3-phase / 4-wire (inverter type)				8	3-phase / 4-wire (inverter type)				
99 Other				99	Other				

DRAT class					
Data object name	Common data class	Explanation	Т	M/O/C	
VRtg	ASG	Voltage level rating		М	
ARtg	ASG	Current rating under nominal voltage under nominal power factor		0	
HzRtg	ASG	Nominal frequency		0	
TmpRtg	ASG	Max temperature rating		0	
FltRtgPct	ASG	Exposure to fault rates as percent		0	
FItARtg	ASG	Max fault current rating		0	
FltDurTms	INS	Max fault duration rating		0	
MaxFltRtg	ASG	Max short circuit rating		0	
VARtg	ASG	Max volt-amps rating		0	
WRtg	ASG	Max watt rating		0	
VarRtg	ASG	Max var rating		0	
MaxLodRamp	INS	Max load ramp rate		0	
MaxUnldRamp	INS	Max unload ramp rate		0	
EmgRampRtg	INS	Emergency ramp rate		0	
MaxWOut	ASG	Max watt output – continuous		0	
EmgMaxWOut	CSG	ax watt output – emergency limits for different minutes		0	
WRtg	ASG	ated watts		0	
MinWOut	ASG	Min watt output – continuous		0	
EmgMinWOut	CSG	Min watt output – emergency limits for different minutes		0	
MaxVarOut	ASG	Max var output		0	
SeqDir	ENS	Sequence (direction): ABC or CBA Value Explanation 0 ABC 1 CBA		0	
DisconnLevW	ASG	Generator disconnect level		0	
RLodSetRte	INS	Raise baseload setpoint rate		0	
LLodSetR	INS	Lower baseload setpoint rate		0	
GndZ	CMV	Grounding impedance		0	
SelfV	ASG	Self-service voltage		0	
SelfW	ASG	Self-service nominal power		0	
SelfPF	ASG	Self-service nominal power factor		0	
SelfVRng	ASG	Self-service acceptable voltage range.		0	
EffRtgPct	ASG	Efficiency at rated capacity as percent		0	

6.1.4 LN: DER advanced generator ratings Name: DRAZ

The following logical node defines the DER advanced generator ratings. These are established as status objects since they are not expected to be remotely updated except through the use of the system configuration language or other direct intervention. See Table 18.

Table 18 – DER advanced generator ratings, LN (DRAZ)

DRAZ class				
Data object name	Common data class	Explanation	Т	M/O/C
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)		
Data				
System logical node	data		1	1
		LN shall inherit all mandatory data from common logical node class		М
		Data from LLN0 may optionally be used		0
Status information	†			
PFGnRtg	MV	Power factor rating generating as angle		0
PFAbsRtg	MV	Power factor rating absorbing as angle		0
SynZ	CMV	Synchronous impedance		0
TransZ	CMV	Transient impedance		0
SubTransZ	CMV	Subtransient direct axis impedance		0
SubTransQuadZ	CMV	Subtransient quadrature axis impedance		0
NegSeqZ	CMV	Negative sequence impedance		0
ZerSeqZ	CMV	Zero sequence impedance		0
OpCctDirTms	INS	Open circuit transient direct axis time constants		0
ShCctDirTms	INS	Short circuit subtransient direct axis time constants		0
OpCctQudTms	INS	Open circuit subtransient quadrature axis time constants		0
ShCctQudTms	INS	Short circuit subtransient quadrature axis time constants		0
InertTms	INS	Time for response to fault current (MW $ imes$ seconds / MVA)		0
PQVLimCrv	CSG	Real power-reactive power-voltage dependency curve		0
PMaxQCrv	CSG	PQ operating region of apparent power for max Q		0
PMinQCrv	CSG	PQ operating region of apparent power for min Q		0
AlimCrv	CSG	Table 10×10		0
TransVLim	MV	Transient voltage limits: Volts – Surge – mostly by magnitude		0
ImbALim	MV	DER current imbalance limit		0
ImbVLim	MV	DER voltage imbalance limit		0
ThdWPct	MV	Total harmonic distortion for power as percent of fundamental power		0
ImpactHzPct	MV	Frequency impact on the DER output as percent		0
HACrvPct	HMV	Table of current harmonics dependencies on DER operations		0
HVCrvPct	HMV	Table of voltage harmonics dependencies on DER operations		0
ChgLimVPct	MV	Rapid voltage changes as percent of voltage		0
ChgLimAng	MV	Rapid angle changes as limits on degrees		0
ChgLimRatAng	M∨	Rate of angle change as limits on degrees over time		0

6.1.5 LN: Generator cost Name: DCST

The generator cost logical node provides the related economic information on generator operating characteristics. In some implementations, it is expected that multiple DCST LNs will be used for different seasons or for different operational conditions. See Table 19.

Table 19 – Generator cost, LN DCST

DCST class					
Data object name	Common data class	Explanation	Т	M/O/C	
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)			
Data					
System logical nod	le data				
		LN shall inherit all mandatory data from common logical node class		М	
		Data from LLN0 may optionally be used		0	
Status information					
HeatRteCstSt	CSG	Active curve characteristics for the incremental heat rate curve		М	
Settings					
Currency	CUG	ISO 4217 currency 3-character code		0	
HeatRteCst	CSG	Costs associated with each segment in an incremental heat rate curve		0	
CstRamp	CSG	Cost for ramping associated with each segment		0	
CstStart	ASG	Cost for starting generator		0	
CstStop	ASG	Cost for stopping generator		0	

6.2 Logical nodes for DER excitation logical device

6.2.1 DER excitation logical device (informative)

DER excitation comprises the components of a DER that handles the excitation systems used to start the generator. The LNs include:

- DREX: Excitation ratings,
- DEXC: Excitation operations.

6.2.2 LN: Excitation ratings Name: DREX

The following logical node defines the DER excitation ratings. These are established as status objects since they are not expected to be remotely updated except through the use of the system configuration language or other direct intervention. See Table 20.

DREX class							
Data object name	Common data class	Explanation	Т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical noo	le data						
		LN shall inherit all mandatory data from common logical node Class		М			
		ata from LLN0 may optionally be used					
Status information							
ExtTyp	INS	Type of exciter: DC: permanent magnet or motor-generator; AC: static		М			

Table 20 – Excitation ratings, LN (DREX)

DREX class							
Data object name	Common data class	Explanation	Т	M/O/C			
ExtVNoLod	MV	Excitation voltage at no load		0			
ExtVatPF	MV	Excitation voltage at rated power factor		0			
ExtForc	ING	Forced excitation: Yes/no		0			
ExtANoLod	MV	Excitation current no load		0			
ExtAatPF	MV	Excitation current at rated power factor		0			
ExtInertTms	INS	Excitation inertia constant		0			
CtrHzHiLim	ASG	Hard high frequency control limit. This is for normal, islanded generation, as setpoint for the upper level of Hz allowed for the generator.		0			
CtrHzLoLim	ASG	Hard low frequency control limit. This is for normal, islanded generation, as setpoint for the lower level of Hz allowed for the generator.		0			
CtrHzHiAlm	ASG	Hard high frequency alarm limit		0			
CtrHzLoAlm	ASG	Hard low frequency alarm limit		0			

6.2.3 LN: Excitation Name: DEXC

The DEXC logical node provides settings and status of the excitation components of DER devices. See Table 21.

DEXC class							
Data object name	Common data class	Explanation	Т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical no	de data						
		LN shall inherit all mandatory data from common logical node class		М			
		Data from LLN0 may optionally be used		0			
Status information	,	•					
GenExcit	SPS	Excitation state: Value Explanation True Excitation on False Excitation off		Μ			
FlshAlm	SPS	Field flashing failure – True = failure		0			
PwrSupAlm	SPS	Power system failure – True = failure		0			
DCAIm	SPS	DC system failure – True = failure		0			
ACAIm	SPS	AC system failure – True = failure		0			
UPSAIm	SPS	UPS failure – True = failure		0			
BIkA	SPS	Operation blocked due to current – True = blocked		0			
BIkV	SPS	Operation blocked due to voltage – True = blocked		0			
MaxHiVLim	SPS	Maximum allowed voltage set-point reached – True = max		0			
MaxLoVLim	SPS	Minimum allowed voltage set-point reached – True = min		0			

Table 21 – Excitation, LN (DEXC)

DEXC class								
Data object name	Common data class	Explanation	Т	M/O/C				
DroopV	SPS	Voltage droop status: Value Explanation True Droop enabled False Droop not enabled		0				
PowStab	SPS	Value Explanation 0 No 1 Yes		0				
Controls								
SetV	APC	Voltage set-point		0				
ExtGain	APC	Power stabilizer exciter gain setting		0				
PhLeadComp	APC	Power system stabilizer phase lead compensation		0				
StabSigWash	APC	Power system stabilizer signal washout		0				
StabGain	APC	Power system stabilizer gain		0				
ExtCeilV	APC	Forced excitation ceiling voltage		0				
ExtCeilA	APC	Forced excitation ceiling amps		0				
ExtVTms	INC	Forced excitation voltage time response		0				
ExtVDurTms	INC	Forced excitation duration of ceiling voltage		0				

6.3 Logical nodes for DER speed/frequency controller

6.3.1 Speed/frequency logical device (informative)

Some DER generators can have their speed or frequency controlled to affect their energy output. The LNs for the speed or frequency logical device could include:

• DSFC: Speed or frequency controller.

6.3.2 LN: Speed/Frequency controller Name: DSFC

The DSFC logical node defines the characteristics of the speed or frequency controller. See Table 22.

DSFC class							
Data object name	Common data class	Explanation	т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical no	ode data						
		LN shall inherit all mandatory data from common logical node class		М			
		Data from LLN0 may optionally be used		0			

Table 22 – Speed/frequency controller, LN (DSFC)

DSFC class									
Data object name	Common data class	Explanation	т	M/O/C					
Status informa	tion								
HzActSt	SPS	Frequency (speed) droop status: Disabled; enabled Value Explanation 0 Disabled (fixed frequency) 1 Enabled		0					
Settings									
Droop	ASG	Power droop in energy per frequency		М					
RefHz	ASG	Reference frequency		М					
RegBndOvHz	ASG	Regulation band for over-frequency (frequency deviation at which the control response is 100 percent activated)		М					
RegDbOvHz	ASG	Deadband for over-frequency (frequency deviation where no control action is taken)		М					
PwrRsvOvHz	ASG	Power reserved for over-frequency for frequency control		0					
RegBndUnHz	ASG	Regulation band for under-frequency (frequency deviation at which the control response is 100 percent activated)		М					
RegDbUnHz	ASG	Deadband for under-frequency (frequency deviation where no control action is taken)		М					
PwrRsvUnHz	ASG	Power reserved for under-frequency for frequency control		0					
Controls									
HzAct	SPC	Frequency control activate (1=activate, 0=deactivate)		0					
Measured valu	es								
HzPwr	MV	Power currently activated for frequency control		0					

6.4 Logical nodes for DER inverter/converter logical device

6.4.1 Inverter/converter logical device (informative)

The diagram in Figure 7 provides a generalized schematic of an inverter / converter.

IEC 105/09

Some DER generators require rectifiers, inverters, and other types of converters to change their electrical output into end-user AC. The LNs for the inverter/converter logical device could include:

- ZRCT: Rectifier for converting alternating current to continuous, direct current (AC -> DC),
- ZINV: Inverter for converting direct current to alternating current (DC -> AC),
- DRAT: Inverter nameplate data,
- MMDC: Measurement of intermediate DC (see IEC 61850-7-4),
- MMXU: Measurements of input AC (see IEC 61850-7-4),
- MMXU: Measurements of output AC (see IEC 61850-7-4),
- CCGR: Cooling group control for cooling fans (see IEC 61850-7-4).

6.4.2 LN: Rectifier Name: ZRCT

The ZRCT logical node defines the characteristics of the rectifier, which converts generator output AC to intermediate DC. See Table 23.

			ZF	RCT class				
Data object name	Common data class	Explan	xplanation					
LNName		Shall be	all be inherited from logical-node class (see IEC 61850-7-2)					
Data								
System logical no	de data							
		LN shal class	l inherit al	II mandatory data from common logical node		М		
		Data fro	om LLN0 n	nay optionally be used		0		
		Type of	commuta	tion:				
			Value	Explanation				
CmutTyp	ENG		0	Line commutated		M		
			1	Self commutated				
	ENG	Type of	isolation:					
			Value	Explanation				
			0	Not applicable / Unknown				
L T			1	Power frequency transformer isolated				
тзотур			2	Hi frequency transformer isolated		IVI		
			3	Non-isolated, grounded				
			4	Non-isolated, isolated DC source				
			99	Other				
		Type of	voltage re	egulation:				
			Value	Explanation				
			0	Not applicable / Unknown				
			1	Regulated output: fixed voltage				
vкеgтур	ENG		2	Regulated output: variable voltage		IVI		
			3	Filtered output: load dependent				
			4	Unregulated and unfiltered				
			99	Other				

Table 23 – Rectifier, LN (ZRCT)

			ZR	CT class		
Data object name	Common data class	Explan	ation		Т	M/O/C
		Conver	onversion type:			
			Value	Explanation		
			0	Not applicable / Unknown		
ConvTyp	ENG		1	AC to DC		0
			2	AC to AC to DC		
			3	AC to DC to DC		
			99	Other		
		Type of	coolina m	ethod:		
		71.5.5	Value	Explanation		
			0	Not applicable / Unknown		
			1	Passive air cooling (heatsink)		
СооІТур	ENG		2	Forced air cooling (fan + heatsink)		0
			3	Fluid cooling (water)		
			4	Heat pipe		
			99	Other		
Status information		ļ				I
		AC syst	tem type:			1
		/ (O 0) 0	Value	Explanation		
ΔΟΤνη	ENG		1	Single phase		м
лотур			2	Two phase		
			3	Three phase		
		0	(:)(
		Output	fliter type:	Evaluation		
			value	Explanation		
			1	Not applicable / Unknown		
OutFilTyp	ENG		2	Series filter (L)		0
			2	Parallel filter (LC)		
			4	Series-Parallel (LCL)		
			99	Other		
		Input w	aveform co	nditioning type:		
			Value	Explanation		
			0	Not applicable / Unknown		
			1	None		
InWavTyp	ENG		2	EMI filter		0
			3	Line filter		
			4	EMI/Line filter		
			5	Unified power factor		
			99	Other		
Settings	<u>.</u>				,	
OutWSet	ASG	Output	power setp	point		0
InALim	ASG	Input cu	urrent limit			0
OutVSet	ASG	Output	voltage set	tpoint		0
OutALim	ASG	Output	current lim	it		0
InVLim	ASG	Input vo	oltage limit			0

6.4.3 LN: Inverter Name: ZINV

The ZINV logical node defines the characteristics of the inverter, which converts DC to AC. The DC may be the output of the generator or may be the intermediate energy form after a generator's AC output has been rectified. See Table 24.

			ZINV class		
Data object name	Common data class	Explanation		Т	M/O/C
LNName		Shall be inheri	ted from logical-node class (see IEC 61850-7-2)		
Data	•	1		<u>.</u>	<u> </u>
System logical no	de data				
		LN shall inherit	t all mandatory data from common logical node class		М
		Data from LLN	0 may ontionally be used		0
	100	Data nom LEN			
WRtg	ASG	Maximum powe	er rating		IVI
VarRtg	ASG	Maximum var r	ating: var		0
		Switch type:			
		Valu	e Explanation		
		0	Not applicable / Unknown		
SwTvp	ENG	1	Field effect transistor		0
зwтур	LING	2	Insulated gate bipolar transistor		0
		3	Thyristor		
		4	Gate turn off thyristor		
		99	Other		
	ENG	Type of cooling	vpe of cooling method:		
		Valu	e Explanation		
		0	Not applicable / Unknown		
		1	Passive air cooling (heatsink)		
СооІТур		2	Forced air cooling (fan + heatsink)		0
		3	Fluid cooling (water)		
		4	Heat pipe		
		99	Other		
PQVLim	CSG	P-Q-V set of lin	miting curves		0
Status information	<u>ו</u>	1			
		Current conner	ct mode:		
			e Explanation		
			Not applicable / Upknown		
CridModSt	ENS	1	Disconnected		0
GITUMOUST	LING	2	Power not delivered		Ŭ
		3	Power delivered		
		99	Other		
Stdby	SPS	Inverter stand-	by status – True: stand-by active		0
CurLev	SPS	DC current lev	el available for operation – True: sufficient current		0
		- <i>i</i>			
		Type of commu	utation:		
CmutTvp	ENG	Valu	e Explanation		0
			Self commutated		

Table 24 – Inverter, LN (ZINV)

ZINV class						
Data object name	Common data class	Explan	ation		Т	M/O/C
		Type of	isolation:			
			Value	Explanation		
			0	Not applicable / Unknown		
1 T	ENIC		1	Low frequency transformer isolated		_
тзотур	ENG		2	Hi frequency transformer isolated		0
			3	Non-isolated, grounded		
			4	Non-isolated, isolated DC source		
			99	Other		
SwHz	ASG	Nomina	I frequency	y of switching		0
		Powers	system con	nect modes to the power grid:		
			Value	Explanation		
			0	Not applicable / Unknown		
			1	Current-source inverter (CSI)		
GridMod	ENG		2	Voltage-controlled voltage-source inverter (VC-VSI)		0
			3	Current-controlled voltage-source inverter (CC-VSI)		
			99	Other		
Settinas				·	-	
		AC Sys	tem Type:			
	ENG	//0 0y3	Value	Explanation		
ACTvp			1	Single phase		м
			2	Two phase		
			3	Three phase		
PQVLimSet	CSG	Active of	curve chara	acteristic curve for PQV limit		М
OutWSet	ASG	Output	power setp	point		М
OutVarSet	ASG	Output	reactive po	ower setpoint		0
OutPFSet	ASG	Power f	actor setpo	oint as angle		0
OutHzSet	ASG	Freque	ncy setpoir	nt		0
InAl im	ASG	Input cu	urrent limit			0
InVLim	ASG	Input vo	oltage limit			0
		Inverter	nhase A f	eed configuration.		<u> </u>
		invortor	Value	Explanation		
			0	Not applicable / Unknown		
			1	Feeding from N to A		
			2	Feeding from N to B		
			3	Feeding from N to C		
PhACnfg	ENG		4	Feeding from A to B		0
			5	Feeding from A to C		
			6	Feeding from B to A		
			7	Feeding from B to C		
			8	Feeding from C to A		
			9	Feeding from C to B		
			99	Other		
		Inverter	Phase B	feed configuration: see PhACnfg for enumerated	\mathbf{T}	
PhBCnfg	ENG	values				0

ZINV class							
Data object name	Common data class	Explanation	Т	M/O/C			
PhCCnfg	ENG	Inverter Phase C feed configuration: see PhACnfg for enumerated values		0			
Measured values							
HeatSinkTmp	MV	Heat sink temperature: Alarm if over max		0			
EnclTmp	MV	Enclosure temperature		0			
AmbAirTemp	MV	Ambient outside air temperature		0			
FanSpdVal	MV	Measured fan speed: Tach or vane		0			

7 Logical nodes for specific types of DER

7.1 Logical nodes for reciprocating engine logical device

7.1.1 Reciprocating engine description (informative)

A reciprocating engine is an engine that utilizes one or more pressure-driven pistons in order to convert back-and-forth motion into a rotating motion. The most common form of reciprocating engine used to generate electricity is the diesel engine, which is used in combination with an electric generator to form a diesel generator.

Small portable diesel generators range from about 1 kVA to 10 kVA, usually designed for backup home use. Larger commercial generators can range from 8 kVA to 30 kVA for home-offices, small shops and individual offices, while industrial generators up to 2 000 kVA can be used for large office complexes, factories, and power stations.

Diesel generators can be used as off-grid sources of electricity or as emergency powersupplies if the grid fails. The larger commercial and industrial generators may also be used to sell excess energy or other ancillary services back to utility grids.

7.1.2 Reciprocating engine logical device (informative)

The LNs in this subclause cover the information models for the reciprocating engine energy converter. See Figure 8. Figure 9 illustrates some of the LNs that could be included in a diesel generation system.

Figure 8 – Example of a reciprocating engine system (e.g. Diesel Gen-Set)

Reciprocating Engine Logical Devices and Logical Nodes

Figure 9 – Example of LNs in a reciprocating engine system

In addition to the LNs needed for the DER management (see Clause 5) and the DER generator (see Clause 6), the LNs in the reciprocating engine logical device could include:

- DCIP: Reciprocating engine characteristics, measured values, and controls (see 7.1.3),
- MFUL: Fuel characteristics (see 8.1.2),
- DFLV: Fuel delivery system (see 8.1.3),
- ZBAT: Auxiliary battery (see 8.2.2),
- ZBTC: Auxiliary battery charger (see 8.2.3),
- STMP: Temperature characteristics, including coolant (e.g. air, water) intake, exhaust (outlet), manifold, engine, lubrication (oil), after-cooler, etc. (see 8.5.2),
- MPRS: Pressure characteristics, including coolant (e.g. air, water) intake, exhaust (outlet), manifold, engine, turbine, lubrication (oil), after-cooler, etc. (see 8.5.3),
- MFLW: Flow characteristics, including coolant, lubrication, etc. (see 8.5.5),
- SVBR: Vibration characteristics (see 8.5.6),
- MENV: Emissions characteristics, including coolant (e.g. air, water) intake, exhaust (outlet), manifold, engine, turbine, lubrication (oil), after-cooler, etc. (see 8.5.7).

7.1.3 LN: Reciprocating engine Name: DCIP

The reciprocating engine characteristics covered in the DCIP logical node reflect those required for remote monitoring and control of reciprocating engine functions and states. See Table 25.

DCIP class Common т M/O/C Data object name Explanation data class LNName Shall be inherited from logical-node class (see IEC 61850-7-2) Data System logical node data LN shall inherit all mandatory data from common logical node class Μ Data from LLN0 may optionally be used \cap Status information EngOnOff SPS Engine status: Explanation Value Μ True On False Off Settings ASG MinSpd Minimum speed 0 MaxSpd ASG Maximum speed 0 CSG 0 HeatRteCrv Heat rate curves Controls APC Final target engine speed TrgSpd 0 APC 0 Desired engine torque EngTrqSet DPC True = start engine; False = stop engine EngCtl Ο 0 DPC CrankCtl True = on; False = off crank relay driver command 0 DPC True = emergency start; False = stop diesel engine EmgCtl DPC 0 True = diagnostic mode enable DiagEna Measured values EngRPM MV Engine speed 0 0 ΜV EngTrq Engine torque 0 ΜV Engine timing as degrees BTDC (before top dead centre) EngTmDeg BlowFlow ΜV Blowby flow 0

Table 25 – Reciprocating engine, LN (DCIP)

7.2 Logical nodes for fuel cell logical device

7.2.1 Fuel cell description (informative)

A fuel cell is an electrochemical energy conversion device. It produces electricity from external supplies of fuel (on the anode side) and oxidant (on the cathode side). These react in the presence of an electrolyte. Generally, the reactants flow in and reaction products flow out while the electrolyte remains in the cell. Fuel cells can operate virtually continuously as long as the necessary flows are maintained. Over 20 different types of fuel cells have been developed. A diagram of a generic proton exchange membrane (PEM) fuel cell is shown in Figure 10.

- 58 -

Figure 10 – Fuel cell – Hydrogen/oxygen proton-exchange membrane fuel cell (PEM)

A typical fuel cell produces about 0,8 V. To create enough voltage for the many applications requiring higher voltage levels, the cells are layered and combined in series and parallel into a "fuel cell stack" (see Figure 11). The number of cells used is usually greater than 45 and varies with design. The theoretical voltage of a fuel cell is 1,23 V, at a temperature of 25 °C. This voltage depends on the fuel used, quality and temperature of the cell.

Figure 11 – PEM fuel cell operation

7.2.2 Fuel cell logical device (informative)

The LNs in this subclause describe the information models for the fuel cell as a prime mover. Figure 12 illustrates the LNs used in a fuel cell system.

Figure 12 – Example of LNs used in a fuel cell system

In addition to the LNs needed for the DER management (see Clause 5) and the DER generator (see Clause 6), the fuel cell logical device could include the following LNs:

- DFCL: Fuel cell controller characteristics (see 7.2.3). These are the fuel cell specific characteristics which are not in DRCT,
- DSTK: Fuel cell stack (see 7.2.4),
- DFPM: Fuel processing module (see 7.2.5),
- CSWI: Switch between fuel cell and inverter (see IEC 61850-7-4),
- ZRCT: Rectifier (see 6.4.2),
- ZINV: Inverter (see 6.4.3),
- MMXU: Output electrical measurements (see IEC 61850-7-4),
- MMDC: Measurement of intermediate DC (see IEC 61850-7-4),
- MFUL: Fuel characteristics (see 8.1.2),
- DFLV: Fuel delivery system (see 8.1.3),
- MFLW: Flow characteristics, including air, oxygen, water, hydrogen, and/or other gasses or liquids used for fuel and for the fuel cell processes (see 8.5.5),
- ZBAT: Auxiliary battery (see 8.2.2),
- ZBTC: Auxiliary battery charger (see 8.2.3),
- STMP: Temperature characteristics, including coolant (e.g. air, water) intake, exhaust (outlet), manifold, engine, lubrication (oil), after-cooler, etc. (see 8.5.2),

- MPRS: Pressure characteristics, including coolant (e.g. air, water) intake, exhaust (outlet), manifold, engine, turbine, lubrication (oil), after-cooler, etc. (see 8.5.3),
- SVBR: Vibration characteristics (see 8.5.6),
- MENV: Emissions characteristics, including coolant (e.g. air, water) intake, exhaust (outlet), manifold, engine, turbine, lubrication (oil), after-cooler, etc. (see 8.5.7).

7.2.3 LN: Fuel cell controller Name: DFCL

The fuel cell characteristics covered in the DFCL logical node reflect those required for remote monitoring of critical functions and states of the fuel cell itself. See Table 26.

DFCL class								
Data object name	Common data class	Explanation	Т	M/O/C				
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)						
Data								
System logical not	de data							
		LN shall inherit all mandatory data from common logical node class		М				
		Data from LLN0 may optionally be used		0				
Status information	1							
StrCnt	INS	Count of system starts since last reset		М				
ConnGriCnt	INS	Count of reconnections to power system						
OpTms	INS	Lifetime system run time		М				
LifeEfcPct	INS	Efficiency estimate (lifetime) as percent		М				
InstEfcPct	INS	Instantaneous efficiency estimate as percent		0				
MaintTms	INS	Time until next maintenance: seconds		0				
Settings								
GriIndWRtg	ASG	System power system independent output power rating		0				
GriDepRtg	ASG	System power system dependent output power rating		0				
VRtg	ASG	System output voltage rating		0				
HzRtg	ASG	System output frequency rating		0				
FuelTyp	ENG	System input fuel type (see # in Table 36)		0				
FuelCsmpRte	ASG	System maximum fuel consumption rate		0				
EfcPct	ASG	System average efficiency as percent		0				
Alim	ASG	Input current limit		М				
Vlim	ASG	Input voltage limit		0				
Controls	•	·						
FuelShut	DPC	True = open; False = close fuel valve driver command		М				
EmgCtl	DPC	True = start; False = stop emergency stop fuel cell		0				
Measured values								
LifeWh	MV	Lifetime system run energy		М				
FuelCsmp	MV	Input fuel consumption (lifetime)		0				
WtrCsmp	MV	Input water consumption (lifetime)		0				
InOxFlwRte	MV	Input air or oxygen flow rate		0				
WtrLev	MV	Water level remaining		0				

Table 26 – Fuel cell controller, LN (DFCL)

DFCL class							
Data object name	Common data class	Explanation	Т	M/O/C			
OutHydRte	MV	Output hydrogen flow rate		0			
OutHydLev	MV	Output hydrogen level		0			
WtrCndv	MV	Water conductivity		0			

7.2.4 LN: Fuel cell stack Name: DSTK

Fuel cells are stacked together to provide the desired voltage level. The characteristics of a fuel cell stack that are included in the DSTK logical node are those required for remote monitoring of the fuel cell stack. See Table 27.

		I	DSTK class			
Data object name	Common data class	Explanation	blanation			
LNName		Shall be inherite	ed from logical-node class (see IEC 61850-7-2)			
Data	•					
System logical nod	e data					
		N shall inherit	all mandatory data from common logical node class		М	
		Data from LLN0	may optionally be used		0	
Status information						
StkSt	SPS	Stack state: Value True False	Explanation On Off		м	
CellVTrCnt	INS	Count of cell lov	v voltage trips		0	
StkLodTms	INS	Accumulated sta	ack load time		0	
MaintTms	INS	Fime until next i	ime until next maintenance			
Settings	-					
StkWRtg	ASG	Stack power rat	ing		0	
StkVRtg	ASG	Stack voltage ra	ting		0	
StkARtg	ASG	Stack current ra	ting		0	
StkFuelTyp	ASG	Stack input fuel	type		0	
CellCnt	ING	Count of cells ir	stack		0	
Measured values	-					
StkWh	MV	Accumulated sta	ack energy		0	
StkEfcPct	MV	nstantaneous s	tack efficiency		0	
OutDCV	MV	Stack voltage in	DC volts		0	
OutDCA	MV	Stack direct cur	rent		0	
InCoolTmp	MV	Stack inlet coola	ant temperature		0	
OutCoolTmp	MV	Stack outlet coc	lant temperature		0	
CoolFlwRte	MV	Coolant flow rat	e		0	
CoolPres	M∨	Coolant inlet pre	essure		0	

Table 27 – Fuel cell stack, LN (DSTK)

DSTK class							
Data object name	Common data class	Explanation	Т	M/O/C			
HydFlwRte	MV	Hydrogen (or reformate) flow rate		0			
InHydPres	MV	Inlet hydrogen pressure		0			
InOxFlwRte	MV	Input air or oxygen flow rate		0			
InOxPres	MV	Inlet oxidant pressure		0			

7.2.5 LN: Fuel processing module Name: DFPM

The fuel processing module of the fuel cell is used to extract hydrogen from other types of fuels. The hydrogen can then be used in the fuel cell to make electricity. This LN can be combined with one or two MFUL LNs for a complete picture of fuel processing. The data included in the DFPM logical node are those required for remote monitoring of the fuel processing module. See Table 28.

Table 28 – Fuel cell processing module, LN (DFPM)

			DFI	PM class			
Data object name	Common data class	Explan	lanation				
LNName		Shall be	all be inherited from logical-node class (see IEC 61850-7-2)				
Data							
System logical nod	e data						
		LN shal	l inherit all	mandatory data from common logical node class		М	
		Data fro	a from LLN0 may optionally be used				
ProcTyp	ENG	FPM pr	ocessing ty	/pe:			
			Value	Explanation			
			0	Not applicable / Unknown			
			1	Steam reforming		0	
			2	Partial oxidation		Ŭ	
			3	Autothermal reforming			
			99	Other			
ThmRtg	ASG	FPM ou	Itput power	rating (thermal)		М	
Status information		•			Į		
FPMSt	SPS	FPM sta	ate:				
			Value	Explanation			
			True	On		M	
		False Off	Off				
Settings		•					
InFuelTyp	ENG	FPM in	out fuel type	e			
			Value	Explanation			
			0	Not applicable / Unknown			
			1	Hydrogen plus pure oxygen		0	
			2	Hydrogen			
			3	Methanol			
			99	Other			

DFPM class								
Data object name	Common data class	Explana	xplanation			M/O/C		
OutFuelTyp	ENG	FPM ou	VI output fuel type: e.g. Hydrogen, Reformate					
			Value	Explanation				
			0	Not applicable / Unknown				
			1	Hydrogen		0		
			2	Reformate				
			99	Other				
Measured values								
InAccWh	MV	Accumu	lated input	tenergy		0		
OutAccWh	MV	Accumu	lated outp	ut energy		0		
ConvEfc	MV	Convers	sion efficie	ncy		0		

7.3 Logical nodes for photovoltaic system (PV) logical device

7.3.1 Photovoltaic system description (informative)

A photovoltaic power system, commonly referred to as a PV system, directly converts solar energy into electricity. This process does not use heat to generate electricity and therefore no turbine or generator is involved. In fact, a PV module has no moving part.

PV systems are modular – the building blocks (modules) come in a wide range of power capabilities. These modules can be connected in various configurations to build power systems capable of providing several megawatts of power. However, most installed PV systems are much smaller. One categorization, which can impact how many characteristics and status items need to be monitored and which LNs are needed, is as follows:

- small PV system (up to 10 kW) monitor totals such as power, voltage, current, ambient temperature, and irradiation on panels;
- medium PV system (10 kW to 200 kW) monitor some individual values;
- large PV system (above 200 kW) monitor individual PV strings and ancillary equipment such as fuses.

The basic unit of photovoltaic conversion is a semiconductor device called the solar cell. Many individual solar cells can be interconnected into a PV module. A PV module is the smallest complete environmentally protected assembly of interconnected solar cells; this standard will use this term "module" to describe the equipment for which individual ratings are provided.²⁾

These PV modules are interconnected using combinations of parallel and series connections to form a PV array. The components of a typical PV array are structured as illustrated in Figure 13: first several PV modules are connected in series to form PV strings, and then several PV strings are combined together in parallel using combiners (or junction boxes (JB)) to construct PV arrays. In a large system, PV arrays are often divided into groups of individually controlled sub-arrays composed of series-connected PV modules and parallel-connected PV strings as shown in Figure 14.

²⁾ Commonly one or more PV modules can be packaged as a solar panel, which is typically a rectangular glasscovered pre-assembled plate that is ready for installation. Conversely, some PV installations consist of multiple panels which are treated as one module. Therefore, to avoid confusion, the term "panel" is not used in this standard.

A single PV array is considered to be a single DC power supply unit. Two or more PV array assemblies which are not interconnected in parallel on the generation side of the power conditioning unit are considered as independent PV arrays.

Since the power system requires AC power for interconnected generation, a power conditioning unit (PCU) or inverter is required to transform the DC output of the PV array into AC. Inverters used in PV systems have the added task of adjusting the current and voltage levels (DC) to maximize efficiency during changing solar irradiance and temperature conditions, both of which affect the output power. The optimal combination for a PV module is defined by a point called the *maximum power point* (MPP) on the I-V curve.

Figure 13 illustrates the main building blocks for a small interconnected PV system. In this example, two PV sub-arrays, each of which composed of several series PV modules and parallel strings, are connected to a single grid-tie inverter.

Figure 13 – Example: One line diagram of an interconnected PV system

For larger, more complex PV installations, the PV system can consist of several arrays which are connected to separate inverters. Figure 14 provides an illustration of such a PV system composed of two arrays, each of which consists of twelve sub-arrays. The sub-arrays in turn are constructed from 10 strings in parallel with 12 modules per string.

IEC 112/09

Figure 14 – Schematic diagram of a large PV installation with two arrays of several sub-arrays

PV power systems can be standalone (not connected to the power system), hybrid (combined with another energy source), or interconnected (connected with the power system). The photovoltaic system covered by this standard is assumed to be interconnected with the power system. Therefore, there is no obligation to provide additional energy storage (e.g. battery system), although this may be included.

7.3.2 Photovoltaics system logical device (informative)

The LNs in this subclause describe the information models for the photovoltaics system as a prime source of electric energy. Figure 15 illustrates these logical nodes associated with one configuration of a photovoltaics system, although actual implementations may vary, depending upon the system requirements.

Photovoltaics System Logical Devices and Logical Nodes

Figure 15 – Example of LNs associated with a photovoltaics system

Building logical devices to automate the operation of a PV system would require the following functions.

- Switchgear operation: functions for the control and monitoring of breakers and disconnect devices. This is already covered in IEC 61850-7-4 (XCBR, XSWI, CSWI, etc).
- Protection: functions required to protect the electrical equipment and personnel in case of a malfunction. Already covered in IEC 61850-7-4 (PTOC, PTOV, PTTR, PHIZ, etc). A PV specific protection is "DC ground fault protection function" that is required in many PV systems to reduce fire hazard and provide electric shock protection. This function is covered by the PHIZ logical node and described in IEC 61850-7-4.
- Measuring and metering: functions required to obtain electrical measurements like voltage and current. AC measurements are covered in MMXU, while DC measurements are covered as MMDC, both in IEC 61850-7-4.
- DC to AC conversion: functions for the control and monitoring of the inverter. These are covered in this standard (ZRCT, ZINV).
- Array operation: functions to maximize the power output of the array. These include adjustment of current and voltage level to obtain the MPP and also the operation of a tracking system to follow the sun movement. Specific to PV and covered in this standard (DPVC, DTRC).
- Islanding: functions required to synchronize the PV system operation with the power system. This includes anti-islanding requirements specified in the interconnection standards. These are covered in this standard as DRCT (see 5.3.2) and DOPR (see 5.2.3). RSYN is covered in IEC 61850-7-4.
- Energy storage: functions required to store excess energy produced by the system. Energy storage in small PV systems is usually done with batteries, while larger PV systems may include compressed air or other mechanisms. The batteries for energy storage are covered in this standard as ZBAT (see 8.2.2) and ZBTC (see 8.2.3). Compressed air has not yet been modelled.

• Meteorological monitoring: functions required to obtain meteorological measurement like solar irradiation and ambient temperature. These are covered in MMET and STMP.

In addition to the LNs needed for the DER management (see Clause 5), the photovoltaics system logical device could include the following logical nodes:

- DPVM: PV Module ratings. Provides the ratings for a module (see 7.3.3),
- DPVA: PV Array characteristics. Provide general information on a PV array or sub-array (see 7.3.4),
- DPVC: PV Array controller. Used to maximize the power output of the array. One instantiation of this LN per array (or sub-array) in the PV system (see 7.3.5),
- DTRC: Tracking controller. Used to follow the sun movement (see 7.3.6),
- CSWI: Describes the controller for operation of the various switches in the PV system (see IEC 61850-7-4). CSWI is always used in conjunction with XSWI or XCBR which identifies whether it is DC or AC,
- XSWI: Describes the DC switch between the PV system and the inverter; also the AC switch that provides physical interconnection point of the inverter to the power system (see IEC 61850-7-4),
- XCBR: Describes breakers used in the protection of the PV array (see IEC 61850-7-4),
- ZINV: Inverter (see 6.4.3),
- MMDC: Measurement of intermediate DC (see IEC 61850-7-4),
- MMXU: Electrical measurements (see IEC 61850-7-4),
- ZBAT: Battery if needed for energy storage (see 8.2.2),
- ZBTC: Battery charger if needed for energy storage (see 8.2.3),
- XFUS: Fuses in the PV systems (see 8.3.1),
- FSEQ: Sequencer status if used in startup or shutdown automated sequences (see 8.4.2),
- STMP: Temperature characteristics (see 8.5.2),
- MMET: Meteorological measurements (see 8.5.8).

7.3.3 LN: Photovoltaics module ratings Name: DPVM

The photovoltaics module ratings covered in the DPVM logical node describes the photovoltaic characteristics of a module. See Table 29.

DPVM class							
Data object name	Common data class	Explanation	Т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical node data							
		LN shall inherit all mandatory data from common logical node class		М			
		The data from LLN0 may optionally be used		0			
Status information							
AVCrv	INS	Index into active point of the AV curve		0			
Settings							

Table 29 – Photovoltaic module characteristics, LN (DPVM)

DPVM class									
Data object name	Common data class	Explan	lanation			Explanation		Т	M/O/C
MdulCfgTyp	ENG	PV mod	dule configu	uration type:					
			Value	Explanation					
			0	Unknown / Not applicable		0			
			1	Flat plate		0			
			2	Concentrating					
			99	Other					
MdulAVCrv	CSG	Amp-Vo	olt curve of	module at STC ³⁾		0			
MdulWRtg	ASG	Module	ule rated power at watts peak STC						
MdulW200Rtg	ASG	Module	ule rated power as watts peak at 200 W/m ²						
MaxMdulV	ASG	Module	ule voltage at max power at STC						
MaxMdulA	ASG	Module	current at	max power at STC		0			
MdulOpnCctV	ASG	Module	open circu	it voltage (Voc at STC)		0			
MdulSrtCctA	ASG	Module	short circu	it current (Isc at STC)		0			
MdulWTmpDrt	ASG	Module 25 °C	power/tem	perature derate as percent of degrees above		0			
MdulATmpDrt	ASG	Module 25 °C	current/ter	nperature derate as percent of degrees above		0			
MdulVTmpDrt	ASG	Module 25 °C	voltage/ter	mperature derate as voltage/degrees above		0			
MdulAgeDrtPct	ASG	Module	age derate	e as percent over time		0			

7.3.4 LN: Photovoltaics array characteristics Name: DPVA

The photovoltaics array characteristics covered in the DPVA logical node describe the configuration of the PV array. The logical node may be used to provide configuration information on the number of strings and panels or the number of sub-arrays in parallel. (Note that if the strings are individually controlled, the array characteristic is the same as string. In other word, a string becomes an array by itself). See Table 30.

Table 30 – Photovoltaic array characteristics, LN (DPVA)

DPVA class							
Data object name	Common data class	Explanation	Т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical node	data						
		LN shall inherit all mandatory data from common logical node class		М			
		The data from LLN0 may optionally be used		0			

³⁾ STC: Standard test conditions – see Bibliography.

			DP\	/A class		
Data object name	Common data class	Explan	cplanation			M/O/C
Settings						
		Assemt	oly type:			
			Value	Explanation		
			0	Not applicable / Unknown		
			1	Array		
Тур	ENG		2	Sub-array		М
			3	String		
			4	Module		
			5	Plant		
			99	Other		
		Type of ground connection:				
			Value	Explanation		
			0	Not applicable / Unknown		
GrndConn	ENG		1	Positive ground		0
			2	Negative ground		
			3	Not grounded		
			99	Other		
MdulCnt	ING	Numbe	r of module	es per string	l	0
StrgCnt	ING	Numbe	r of paralle	l strings per sub-array		0
SubArrCnt	ING	Numbe	r of parallel	l sub-arrays per array		0
ArrArea	ASG	Array a	rea			0
ArrWRtg	ASG	Array p	ower rating	g (watts peak – watts p)		0
Tilt	ASG	Assemt adjuste	oly fixed til d)	t - degrees from horizontal (may be seasonally		0
Azi	ASG	Assemt	oly azimuth	- degrees from true north		0

7.3.5 LN: Photovoltaics array controller Name: DPVC

The photovoltaics array controller covered in the DPVC logical node reflects the information required for remote monitoring of critical photovoltaic functions and states. If the strings are individually controlled, one DPVC per string would be required to describe the controls. This logical node also provides list of the possible control modes that can be applied by the array controller. The control mode may change during the operation. The present status is then given by the array control status attribute. See Table 31.

DPVC class							
Data object name	Common data class	Explanation	Т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical no	ode data						
		LN shall inherit all mandatory data from common logical node class		М			
		The data from LLN0 may optionally be used		0			

Table 31 – Photovoltaic array controller, LN (DPVC)

DPVC class								
Data object name	Common data class	Expla	Explanation					
Status informat	tion							
CtrModSt	INS	Array	control mo	ode status		0		
Settings								
TrkRefV	ASG	Peak	power trac	ker reference voltage		0		
TrkWupV	ASG	Powe	r tracker w	rake-up voltage		0		
TrkDIWupTms	ING	Time	me delay for PV wake-up					
TrkDISIpTms	ING	Time	ime delay for PV sleep test					
TrkSlpW	ASG	PV po	V power point to begin sleep test timer					
TrkRte	ING	Powe	Power tracker update rate					
TrkVStp	ASG	Volta	Voltage perturbation step of power tracker					
Controls								
ArrModCtr	ENC	Mode	selected t	o control the power output of the array:				
			Value	Explanation				
			0	Not applicable / Unknown				
			1	Maximum power point tracking (MPPT)				
			2	Power limiter controller		0		
			3	DC current limit				
			4	Array voltage control				
			99	Other				

7.3.6 LN: Tracking controller Name: DTRC

The tracking controller provides overall information on the tracking system to external users. This LN can still be used for defining array or device orientations even if no active tracking is included. See Table 32.

Table 32 – Tra	cking controller,	, LN	(DTRC)
----------------	-------------------	------	--------

DTRC class						
Data object name	Common data class	Explanation		M/O/C		
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)				
Data						
System logical node data						
		LN shall inherit all mandatory data from common logical node class		М		
		The data from LLN0 may optionally be used		0		
61850-7-420 © IEC:2009(E)

DTRC class							
Data object name da	ommon ita class	Explar	nation		т	M/O/C	
		Trackir	racking type:				
		Γ	Value	Explanation			
		ľ	0	Not applicable / Unknown			
		F	1	Fixed, no tracking			
		Ī	2	Single axis – vertical axis of rotation			
			3	Single axis – inclined axis of rotation (north-south)			
TrkTyp EN	١G		4	Single axis – horizontal axis of rotation (north-south)		М	
			5	Dual axis – horizontal and vertical axis of rotation			
			6	Dual axis – two dependent horizontal axes of rotation – main axis north-south			
			7	Dual axis – two dependent horizontal axes of rotation – main axis east-west			
			99	Other			
Status information					-	!	
TrkAlm SP	PS	Trackir	ng alarm – T	True: alarm condition		0	
		Trackir	ng status				
			Value	Explanation			
			0	Unknown			
			1	Stopped			
			2	Automatic tracking in progress			
			3	Reference run in progress			
	ENS		4	Reference run completed			
TrkSt EN			5	Manual mode	Т	0	
			6	Going to position			
			7	In target position			
			8	In stow position			
			9	In storm position			
			10	In snow position			
			11	In night position			
			12	In maintenance position			
Settings							
		Trackir	ng technolog	gy:			
			Value	Explanation			
			0	Not applicable / Unknown			
TrkTech EN	١G		1	Sensory tracking		м	
			2	Astronomical tracking			
			99	Other			
StowAziDea	ASG	Stow a	zimuth dea	rees from true north toward east positive		0	
StowElDeg	ASG	Stow e	levation fro	m horizontal	+	0	
StormAziDeg	ASG	Storm	azimuth dec	arees from true north toward east positive		0	
StormElDea	ASG	Storm	elevation fro	om horizontal	+	0	
SnwAziDea	ASG	Snow a	azimuth dea	rees from true north toward east positive	+	0	
SnwElDea	ASG	Snow e	elevation fro	pm horizontal	+	0	
NightAziDeg	ASG	Night a	zimuth deg	rees from true north toward east positive	+	0	

			D	TRC class					
Data object name	Common data class	Explana	olanation						
NightElDeg	ASG	Night el	evation fro	m horizontal		0			
MaintAziDeg	ASG	Mainten	ance azim	uth degrees from true north toward east positive		0			
MaintElDeg	ASG	Mainten	itenance elevation from horizontal						
IntvAzi	ASG	Azimuth between	th interval, for sensory tracking. Tracking, if absolute difference en actual tracker position and sun position is a higher interval value.						
IntvEl	ASG	Elevatior between	on interval, for sensory tracking. Tracking, if absolute difference on actual tracker position and sun position is a higher interval value.						
IntvTm	ASG	Time inte operation	interval, for astronomical tracking. After this time interval tracking ation is done periodically.						
Controls									
AziDeg	APC	Target a	rget azimuth degrees from true north toward east positive						
ElDeg	APC	Target e	rget elevation from horizontal						
TrkCtl	ENC	Tracking	g command Value 1 2 3 4 5 6 7 8 9	dExplanationStopStart trackingStart reference runGo to manual modeGo to stow positionGo to storm positionGo to snow positionGo to night positionGo to maintenance position		м			
Measured values		1			-	1			
AziDeg	MV	Device a	azimuth de	grees from true north		0			
EIDeg	MV	Device (elevation d	legrees from horizontal		0			

7.4 Logical nodes for combined heat and power (CHP) logical device

7.4.1 Combined heat and power description (informative)

Combined heat and power (CHP) covers multiple types of generation systems involving heat in the production of electricity. Different CHP purposes include the following.

- Heat as primary, electricity as secondary. An industrial process may generate heat or buildings may be heated with steam. The excess heat from these processes may then be used to generate electricity, often via steam or gas turbines. Rather than using energy to cool the heated medium (typically water or other fluid), the heat is used to run a turbine (e.g. steam turbine) which in turn connects to a generator to produce electrical energy.
- Electricity as primary, heat as secondary. Conventional power plants emit the heat created as a byproduct of electricity generation into the environment through cooling towers, as flue gas, or by other means. CHP captures the excess heat for domestic or industrial heating purposes, either very close to the plant, or especially in eastern Europe distributed through steam pipes to heat local housing ("district heating"). This steam can also be used for large air-conditioner units through turning a steam turbine connected to a compressor, which is chilling water sent to the air handler units in a different building.

• Byproduct fuel is available (e.g. produced by landfill or biomass) which can then be burned to generate electricity and/or heat.

There are many variations on these themes (different types of electric generators, different sources of heat, different ownership of equipment, market interactions with respect to heat and energy, constraints on heat or electrical production, etc.). Figure 16 illustrates two configurations.

Figure 16b – CHP based on internal combustion units

Figure 16 – Two examples of CHP configurations

The difficulties in defining a generic CHP model come from, among other reasons:

- the large variety of different types, purposes, and operational characteristics of CHP systems,
- the heterogeneous maturity of CHP systems.

Due to the variety of current thermal facility schemes and prime movers used in CHP configurations, it is not possible to develop a unique model of a CHP system. Therefore, rather than attempting to model the complete CHP systems themselves, a more profitable approach is to model individual parts of CHP systems, which can then be used like building blocks to construct a variety of configurations for different types of CHP systems. Information models of each of these different parts can then be created.

Figure 17, Figure 18 and Figure 19 below show three simple thermal facility scheme examples.

- In Figure 17, heated water/steam from the heating system is used directly for the electricity generation system.
- In Figure 18 and Figure 19, the return water from the domestic heating system is used to generate electricity. In one case, pre-heating storage may be needed if the return temperature from the additional boiler and building is too cool for the CHP. Alternately, the return temperature from the heating system may be too high for the CHP unit; therefore, the CHP unit may need to cool this returning water first.
- In Figure 19, hybrid storage may also be used: instead of using two different tanks, the same tank with two heat exchangers may be used. Hybridizing with electric water heating may also add flexibility to the heating facility.

These examples only show some of the many variations. Many other different CHP system architectures may be implemented.

- 74 -

Figure 17 – CHP unit includes both domestic hot water and heating loops

Figure 18 – CHP unit includes domestic hot water with hybrid storage

In addition to different configurations, CHP systems rely on different prime movers (e.g. gas turbines, fuel cells, microturbines, and diesel engines). Some of these combinations are in different phases of development (from prototypes to commercial off-the-shelf products). Therefore, determining which combined technologies will be used over time will be difficult to determine.

These facts lead again to the conclusion that each part of a CHP system should be separately modelled, with these parts put together as needed by the implementers of different CHP systems. For this reason, many of the different electricity generation LNs could be used in a CHP system, most of which already exist for other DER systems. The LNs that may be unique to CHP are those which handle the heat aspects as well as the "combined" aspects of CHP:

- heat production and boiler systems,
- heat exchange systems,
- chimney and exhaust systems,
- cooling systems,
- combined operations management.

7.4.2 Combined heat and power logical device (informative)

The LNs in this subclause address the non-generator aspects of the CHP system, since the generator types are addressed independently of their use in a CHP system (see reciprocating engines, steam turbines, gas turbines, microturbines⁴), etc.).

Figure 20 illustrates the CHP logical nodes.

Combined Heat and Power Logical Devices and Logical Nodes

Figure 20 – Example of LNs associated with a combined heat and power (CHP) system

In addition to the LNs needed for the DER management (see Clause 5) and the DER generator (see Clause 6) and the DER prime movers (see other DER equipment in Clause 7), the LNs which could be used within a CHP logical device include:

- DCHC: CHP controller of overall CHP system, covering information not contained in the DER unit controller logical device (see 7.4.3),
- DCTS: CHP thermal storage (see 7.4.4),
- CCGR: Coolant system (see IEC 61850-7-4),
- MMXU: Electrical measurements (see IEC 61850-7-4),
- XSWI: Electrical switch (see IEC 61850-7-4),
- STMP: Temperature characteristics (see 8.5.2),
- MPRS: Pressure measurements (see 8.5.3),
- MHET: Heat and cooling measurements (see 8.5.4),
- MFLW: Flow measurements (see 8.5.5),
- SVBR: Vibration measurements (see 8.5.6),

IEC 61850 information models for steam turbines, gas turbines, and microturbines have not yet been developed.

- MENV: Emission measurements (see 8.5.7),
- MMET: Meteorological measurement (see 8.5.8).

7.4.3 LN: CHP system controller Name: DCHC

The CHP system controller provides overall information from the CHP system to external users, including identification of the types of equipment within the CHP system, usage issues, and constraints affecting the overall CHP system, and other parameters associated with the CHP system as a whole. See Table 33.

		D	CHC class				
Data object name	Common data class	Explanation	lanation				
LNName		Shall be inherited	nall be inherited from logical-node class (see IEC 61850-7-2)				
Data	•						
System logical no	de data						
		LN shall inherit all	mandatory data from common logical node class		М		
		The data from LLN	data from LLN0 may optionally be used				
Settings	1	1		1			
Cottingo				Т	1		
		Type of heating m	Type of heating medium:				
		Value	Explanation				
		0	Not applicable / Unknown				
HeatTyp	ENG	1	Water		М		
		2	Steam				
		3	Air				
		99	Other				
		Type of cooling m	edium				
СооІТур							
		value	Not applicable / Upkpowp				
	-NO	0					
	ENG	1			0		
		2	Steam				
		3	Air				
		99	Other				
		Type of energy co	Type of energy converter				
		Value	Explanation				
		0	Not applicable / Unknown				
FnavConvTvp	ENG	1	Gas turbine		М		
		2	Fuel cell				
		3	Reciprocating engine				
		99	Other				
			<u></u>	_			
		Type of generator	:				
		Value	Explanation				
о т	ENIO	0	Not applicable / Unknown		0		
Gniyp	ENG	1	Rotating		0		
		2	Inverter				
		99 Other					
FuelTyp	ENG	Type of fuel (see :	t in Table 36)	+	0		
гиентур				+	0		
MaxHeatCap	ASG	Maximum heat ca	pacity		0		

Table 33 – CHP system controller, LN (DCHC)

61850-7-420 © IEC:2009(E)

	DCHC class								
Data object name	Common data class	Explana	planation			M/O/C			
		Operati	ng modes o	of CHP:					
CHPOpMod E			Value	Explanation		о			
	ENG		0	Not applicable / Unknown					
			1	Heat-production driven					
			2	Electrical generation driven					
			3	Combined heat and generation driven					
			99	Other					
Measured values									
HeatPwrEfc	MV	Heat to	power effic	ciency		0			

7.4.4 LN: Thermal storage Name: DCTS

This logical node describes the characteristics of the CHP thermal storage. This LN applies both to heat storage and to coolant storage, and is used for measurements of heat exchanges. See Table 34.

			D	CTS class				
Data object name	Common data class	Explan	ation		Т	M/O/C		
LNName		Shall be	e inherited	from logical-node class (see IEC 61850-7-2)				
Data	*	•						
System logical no	de data							
		LN shal	l inherit all	mandatory data from common logical node class		М		
		The dat	data from LLN0 may optionally be used					
Settings	1	•						
		Type of	thermal er	nergy storage				
	ENG	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Value	Explanation				
			0	Not applicable / Unknown				
			1	For heating with storage		NA		
ThrmStoTyp			2	For heating without storage		IVI		
			3	For cooling with storage				
			4	For cooling without storage				
			99	Other				
ThrmOutEst	SCR	Estimat time off	ed instanta sets)	aneous thermal energy output over time (using		0		
Measured values								
ThrmCapTot	MV	Total av	vailable the	ermal energy capacity		0		
ThrmCapPct	MV	Remain availabl	ailable capacity					
ThrmIn	MV	Instanta	aneous the	rmal energy input into storage		0		
ThrmOut	MV	Instanta	aneous the	rmal energy output from storage		0		
ThrmLos	MV	Therma	l energy lo	st or dumped		0		

Table 34 – CHP thermal storage, LN (DCTS)

7.4.5 LN: Boiler Name: DCHB

This logical node describes the characteristics of the CHP boiler system. See Table 35.

			DC	HB class				
Data object name	Common data class	Explan	cplanation					
LNName		Shall be	nall be inherited from logical-node class (see IEC 61850-7-2)					
Data	Data							
System logical noc	le data							
		LN shal	N shall inherit all mandatory data from common logical node class					
		The dat	a from LLN	10 may optionally be used		0		
		Type of	boiler:					
	ENG		Value	Explanation				
D 11T			0	Not applicable / Unknown				
вонтур			1	Regular boiler		IVI		
			2	Condensing boiler				
			99	Other				
Status information								
BoilRdy	SPS	Boiler r	eady for op	peration: True = ready		М		
BoilDnReg	SPS	Boiler d	lown regula	ating warning		0		
Control								
BoilCtl	DPC	Boiler s	tart and sto	op: True = Start; False = Stop		М		
Measured values					·			
BoilWh	MV	Energy	being cons	sumed by boiler		0		

Table 35 – CHP Boiler System, LN (DCHB)

8 Logical nodes for auxiliary systems

8.1 Logical nodes for fuel system logical device

8.1.1 Fuel system logical device (informative)

The fuel system logical device describes the characteristics of the system of fuel for different prime movers.

The LNs could include:

- MFUL: fuel characteristics,
- DFLV: delivery system for the fuel, including the rail system, pump, and valves,
- STMP,
- MFLW,
- MPRS,
- KTNK: fuel tank characteristics (IEC 61850-7-410).

Table 36 shows the different types of fuel⁵):

⁵⁾ EIA – Energy Information Administration, official energy statistics from the US government.

Table	36 -	Fuel	types	
-------	------	------	-------	--

Type of energy source	Energy source code	Unit Iabel	AER (Aggr'd) fuel code	#	Energy source description
			Fossil ar	nd nucle	ar fuels
	BIT	kg	COL	0	Anthracite coal and bituminous coal
	LIG	kg	COL	1	Lignite coal
	SUB	kg	COL	2	Sub-bituminous coal
Coal and syncoal	WC	kg	WOC	3	Waste/other coal (includes anthracite culm, bituminous gob, fine coal, lignite waste, waste coal)
	SC	kg	COL	4	Coal-based synfuel, including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials
	DFO	m ³	DFO	5	Distillate fuel oil (diesel, No. 1, No. 2, and No. 4 fuel oils)
	JF	m ³	WOO	6	Jet fuel
	KER	m ³	WOO	7	Kerosene
Petroleum	PC	kg	PC	8	Petroleum coke
products	RFO	m ³	RFO	9	Residual fuel oil (No. 5, No. 6 fuel oils, and bunker C fuel oil)
	WO	m ³	WOO	10	Waste/other oil (including crude oil, liquid butane, liquid propane, oil waste, re-refined motor oil, sludge oil, tar oil, or other petroleum-based liquid wastes)
Notural goo	NG	m ³	NG	11	Natural gas
Natural gas	BFG	m ³	OOG	12	Blast furnace gas
and other	OG	m ³	OOG	13	Other gas
gases	PG	m ³	OOG	14	Gaseous propane
Nuclear	NUC	N/A	NUC	15	Nuclear fission (uranium, plutonium, thorium)
			Rene	wable fu	uels
	AB	kg	ORW	16	Agricultural crop byproducts/straw/energy crops
Solid	MSW	kg	MLG	17	Municipal solid waste
renewable	OBS	kg	ORW	18	Other biomass solids
fuels	TDF	kg	ORW	19	Tire-derived fuels
(biomass)	WDS	kg	WWW	20	Wood/wood waste solids (paper pellets, railroad ties, utility poles, wood chips, bark, an other wood waste solids)
	OBL	m ³	ORW	21	Other biomass liquids (specify in comments)
Liquid	BLQ	kg	WWW	22	Black liquor
renewable	SLW	kg	ORW	23	Sludge waste
(biomass) fuels	WDL	m ³	WWW	24	Wood waste liquids excluding black liquor (BLQ) (Includes red liquor, sludge wood, spent sulfite liquor, and other wood-based liquids)
Gaseous	LFG	m ³	MLG	25	Landfill gas
(biomass) fuels	OBG	m ³	ORW	26	Other biomass gas(includes digester gas, methane, and other biomass gases)
	GEO	N/A	GEO	27	Geothermal
All other	WAT	N/A	HYC	28	Water at a conventional hydroelectric turbine
renewable	SUN	N/A	SUN	29	Solar
fuels	WND	N/A	WND	30	Wind
			All	other fue	
	HPS	N/A	HPS	31	
	PUR	N/A	ОТН	32	Purchased steam

Type of energy source	Energy source code	Unit Iabel	AER (Aggr'd) fuel code	#	Energy source description
	WH	N/A	ОТН	33	Waste heat not directly attributed to a fuel source. Note that WH should only be reported where the fuel source for the waste heat is undetermined, and for combined cycle steam turbines that are not supplementary fired
	OTH	N/A	OTH	34	Other

8.1.2 LN: Fuel characteristics Name: MFUL

The fuel characteristics covered in the MFUL logical node describe the type and nature of the fuel. See Table 37.

	MFUL class									
Data object name	Common data class	Explanation	Т	M/O/C						
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)								
Data										
System logical node	data									
		LN shall inherit all mandatory data from common logical node class		М						
		The data from LLN0 may optionally be used		0						
Status information										
AccOpTms	INS	Accumulated operational time since reset		0						
Settings										
FuelTyp	ENG	Type of fuel (use # in Table 36)		М						
Currency	CUG	Currency used for costs		0						
FuelCost	ASG	Base cost of fuel		0						
GrossCalVal	ASG	Gross calorific value for the fuel		0						
FuelEffCoef	ASG	Rated fuel efficiency coefficient as percent		0						
Measured values										
FuelCostAv	MV	Running average cost of fuel		0						
FuelEfcPct	MV	Fuel efficiency coefficient measured as percent		0						
AccTotFuel	MV	Accumulated fuel consumption		0						
AccFuel	MV	Accumulated fuel consumption since reset		0						
FuelRte	MV	Fuel usage rate		0						
FuelCalAv	MV	Running calorie content of fuel		0						
Controls	•	·								
AccFuelRs	DCP	Reset cumulative fuel accumulation		М						
AccOpTmRs	DCP	Reset accumulated operational time		0						

Table 37 – Fuel characteristics, LN (MFUL)

8.1.3 LN: Fuel delivery system Name: DFLV

The fuel delivery system covered in the DFLV logical node describes the delivery system for the fuel. See Table 38.

Table 38 – Fuel systems, LN (DFLV)

			DF	LV class			
Data object name	Common data class	Explana	ation		Т	M/O/C	
LNName		Shall be	e inherited	from logical-node class (see IEC 61850-7-2)			
Data	•						
System logical nod	le data						
		LN shal	l inherit all	mandatory data from common logical node class		М	
		The dat	a from LLN	I0 may optionally be used		0	
Status information	-						
FuelSt	SPS	Fuel sys	stem status	s – True: on		М	
Settings							
		Type of	fuel delive	ry system:			
FuelDelTyp	ENG		Value	Explanation			
			0	Not applicable / Unknown		0	
	ENG		1	Passive		0	
			2	Pump			
			99	Other			
Measured values							
InFuelRte	MV	Input fu	el flow rate			0	
OutFuelRte	MV	Output	fuel flow ra	te		0	
InFuelTmp	MV	Input fu	el tempera	ture		0	
OutFuelTmp	MV	Output	fuel tempei	rature		0	
FuelRalA	MV	Fuel rai	l actuator o	current		0	
FuelRalPres	MV	Fuel rai	l pressure			0	
EngFuelRte	MV	Engine	fuelling rat	e		0	
TmPres	MV	Timing	rail pressu	re		0	
TmRalActA1	MV	Timing	rail actuato	r current		0	
TmRalActA2	MV	Timing	rail actuato	r current		0	
PumpActA	MV	Fuel pu	mp actuato	r current		0	
Controls							
FuelStr	DPC	Fuel sta	urt			0	
FuelStop	DPC	Fuel sh	utoff valve	driver command		0	

8.2 Logical nodes for battery system logical device

8.2.1 Battery system logical device (informative)

The battery system logical device describes the characteristics of batteries. These batteries could be used as backup power, the source of excitation current, or as energy storage.

The LNs could include:

- ZBAT: battery system characteristics,
- ZBTC: charger for the battery system.

8.2.2 LN: Battery systems Name: ZBAT

The battery system characteristics covered in the ZBAT logical node reflect those required for remote monitoring and control of critical auxiliary battery system functions and states. These may vary significantly based on the type of battery. See Table 39.

			ZE	BAT class		
Data object name	Common data class	Explan	ation		Т	M/O/C
LNName		Shall be	e inherited	from logical-node class (see IEC 61850-7-2)		
Data		-				
System logical no	de data					
		LN sha	II inherit al	I mandatory data from common logical node class		М
		The dat	ta from LLN	N0 may optionally be used		0
Status information)	1			I	<u> </u>
BatSt	SPS	Battery	system st	atus – True: on	Γ	м
Datot		Battory	toct rocult		-	
Dallesiksi	51.5	Dattery	Value	Explanation		
			0	Not applicable / Unknown		
			1	All good		0
			2	Bad		
			99	Other		
BatVHi	SPS	Battery	voltage hi	gh or overcharged – True: high or overcharged		0
BatVLo	SPS	Batterv	voltage lo	w or undercharged – True: low or undercharged		0
Settings						
PatTup	ENG	Type of	f battery:		1	<u> </u>
Баттур		i ype or	Value	Explanation		
			0	Not applicable / Unknown		
			1	Lead-acid		
			2	Nickel-metal hydrate (NiMH)		
			3	Nickel-cadmium (NiCad)		
			4	Lithium		
			5	Carbon zinc		IVI
			6	Zinc chloride		
			7	Alkaline		
			8	Rechargeable alkaline		
			9	Sodium sulphur (NaS)		
			10	Flow		
			99	Other		
AhrRtg	ASG	Amp-hc	our capacit	y rating		0
MinAhrRtg	ASG	Minimu	m resting a	amp-hour capacity rating allowed		0
BatVNom	ASG	Nomina	al voltage o	of battery		0
BatSerCnt	ING	Number	r of cells in	n series		0
BatParCnt	ING	Number	r of cells in	n parallel		0
DisChaCrv	CSG	Dischar	rge curve			0
DisChaTim	SCH	Dischar	rge curve b	by time		0
DisChaRte	ASG	Self dis	charge rat	e		0
MaxBatA	ASG	Maximu	um battery	discharge current		0

Table 39 – Battery systems, LN (ZBAT)

ZBAT class						
Data object name	Common data class	Explanation	Т	M/O/C		
MaxChaV	ASG	Maximum battery charge voltage		0		
HiBatVAlm	ASG	High battery voltage alarm level		0		
LoBatVAIm	ASG	Low battery voltage alarm level		0		
Measured values						
Vol	MV	External battery voltage		Μ		
VolChgRte	MV	Rate of output battery voltage change		0		
InBatV	MV	Internal battery voltage		0		
Amp	MV	Battery drain current		0		
InBatA	MV	Internal battery current		0		
InBatTmp	MV	Internal battery temperature		0		
Controls						
BatSt	SPC	Turn on battery		0		
BatTest	SPC	Start battery test		0		

8.2.3 LN: Battery charger Name: ZBTC

The battery charger characteristics covered in the ZBTC logical node reflect those required for remote monitoring and control of critical auxiliary battery charger. See Table 40.

Table 40 – I	Battery	charger,	LN	(ZBTC)
--------------	---------	----------	----	--------

			ZB	TC class		
Data object name	Common data class	Explana	lanation			
LNName		Shall be	e inherited	from logical-node class (see IEC 61850-7-2)		
Data						
System logical node	e data					
		LN shal	l inherit all	mandatory data from common logical node class		М
		The dat	a from LLN	I0 may optionally be used		0
Status information		1				
BatChaSt	ENG	Battery	ttery charger charging mode status			
			Value	Explanation		
			0	Not applicable / Unknown		
			1	Off		М
			2	Operational mode		
			3	Test mode		
			99	Other		
ChaTms	INS	Chargin	g time sinc	ce last off/reset		0
Settings		1				
BatChaTyp	ENG	Type of	battery cha	arger:		
			Value	Explanation		
			0	Not applicable / Unknown		
			1	Constant voltage		0
			2	Constant current		
			99	Other		

			ZB	TC class			
Data object name	Common data class	Explan	xplanation			M/O/C	
ChaCrv	CSG	Charge	rge curve				
ChaCrvTim	SCH	Charge	curve as t	ime schedule		0	
ReChaRte	ASG	Rechar	harge rate				
BatChaPwr	ASG	Battery	ery charging power required				
BatChaMod	ENG	Battery	charger m Value 0 1 2 3 99	ode setting Explanation Not applicable / Unknown Off Operational mode Test mode Other		М	
Measured values		•			<u>.</u>		
ChaV	MV	Chargin	ng voltage			0	
ChaA	MV	Chargir	ng current			0	

8.3 Logical node for fuse device

8.3.1 Fuse logical device (informative)

Fuses are used to limit current. Although often fuses are not monitored, in some DER devices such as photovoltaic systems, so many fuses are used that it is critical to monitor them so that they may be replaced in a timely manner. Different types of fuses can be used:

- Explosion fuses: (time-delay fuse): slow-blow, fast-blow,
- Fast acting (current limiting fuse),
- Very fast acting (high speed fuse), normally for semiconductors protection.

8.3.2 LN: Fuse Name: XFUS

The XFUS logical node is used to model a fuse which can be described as a switch that is normally closed but can only open once. This equipment cannot be controlled. See Table 41.

XFUS class							
Data object name	Common data class	Explanation	Т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical node	data						
		LN shall inherit all mandatory data from common logical node class		М			
		Data from LLN0 may optionally be used		0			

Table 41 – Fuse, LN (XFUS)

			Х	FUS class		
Data object name	Common data class	Exp	planation			M/O/C
		Туре	e of fuse:			
			Value	Explanation		
			0	Not applicable / Unknown		
			1	Time-delay fuse: slow-blow explosion fuse		
TypFus	ENS		2	Time-delay fuse: fast-blow explosion fuse		М
			3	Fast acting (current limiting fuse)		
			4	Very fast acting (high speed fuse), normally for semiconductors protection		
			99	Other		
FusA	ASG	Fuse	e current ra	iting		М
FusV	ASG	Volta	age rating			0
TmACrv	CSG	Time	e-current cu	nve		0
PkLetA	ASG	Peal	k let-thru c	urrent or Interrupting capacity		М
Status information						
ТурV	SPG	Appl	ication vol	tage: True = DC; False = AC		М
AlmSt	SPS	Fuse	e alarm: Tr	ue = alarm state		0

8.4 Logical node for sequencer

8.4.1 Sequencer logical device

Some DER devices require a sequence of steps for starting up or shutting down. This logical node provides the sequence of steps that the DER device controller will use for those functions.

8.4.2 LN: Sequencer Name: FSEQ

The role of this logical node is to provide information regarding sequences of actions during startup or stopping of a DER device. See Table 42.

	FSEQ class						
Data object name	Common data class	Explanation	т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical node	e data						
		LN shall inherit all mandatory data from common logical node class		М			
		Data from LLN0 may optionally be used		0			
Status information							
SeqStat	INS	Status of the sequencer		М			
StepPos	SPS	Active step		М			
StrCmpl	SPS	Start sequence completed – True = completed		М			
StopCmpl	SPS	Stop sequence completed – True = completed		М			
Controls		•	•	•			

Table 42 – Sequencer, LN (FSEQ)

FSEQ class								
Data object name	Common data class	Explar	Explanation			M/O/C		
		Automa	Automatic or Manual:					
A	SPC		Value	Explanation				
Auto			True	Automatic		IVI		
				Manual				
Start	SPC	Start o	Start order of the sequence			М		
Stop	SPC	Stop o	rder of the	sequence		М		

8.5 Logical nodes for physical measurements

8.5.1 Physical measurements (informative)

NOTE Since these LNs are expected to be used by many systems, IEC TC57 WG10 will develop the final versions of these physical measurements. In the meantime, other WGs have also developed many of these LNs, describing them as supervisory LNs, as sensors, or as measurements, but none are "complete" in that they cover all requirements. When IEC TC 57 WG 10 eventually develops complete LNs, this clause will then point to those LNs.

These LNs cover physical measurements, including temperature, pressure, heat, flow, vibration, environmental, and meteorological conditions.

The LNs included are:

- STMP: Temperature measurements,
- MPRS: Pressure measurements,
- MHET: Heat measurements,
- MFLW: Flow measurements,
- SVBR: Vibration conditions,
- MENV: Emission conditions,
- MMET: Meteorological conditions (see IEC 61850-7-4).

8.5.2 LN: Temperature measurements Name: STMP

This LN provides temperature measurements. See Table 43.

Table 43 – Temperature measurements, LN (STMP)

STMP class							
Data object name	Common data class	Explanation	Т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data							
System logical noc	le data						
		LN shall inherit all mandatory data from common logical node class		М			
		The data from LLN0 may optionally be used		0			
Status information							
TmpSt	SPS	Temperature alarm status		0			
TmpRteSt	SPS	Temperature rate change alarm status		0			
Settings	•						

STMP class								
Data object name	Common data class	Explanation	Т	M/O/C				
MaxTmp	ASG	Maximum temperature		0				
MinTmp	ASG	Minimum temperature		0				
MaxTmpRte	ASG	Maximum temperature change rate		0				
Measured values								
Tmp	MV	Temperature measurement		М				
TmpRte	MV	Rate of temperature change		0				

8.5.3 LN: Pressure measurements Name: MPRS

This LN provides pressure measurements. See Table 44.

Table 44 – Pressure measurements, LN (MPRS)

MPRS class						
Data object name	Common data class	Explanation	т	M/O/C		
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)				
Data						
System logical nod	e data					
		LN shall inherit all mandatory data from common logical node class		М		
		The data from LLN0 may optionally be used		0		
Status information						
PresSt	SPS	Pressure alarm status		0		
PresRteSt	SPS	Pressure rate change alarm status		0		
Settings						
MaxPres	ASG	Maximum pressure		0		
MinPres	ASG	Minimum pressure		0		
MaxPresRte	ASG	Maximum pressure change rate		0		
Measured values		•				
Pres	MV	Pressure measurement		М		
PresRte	MV	Rate of pressure change		0		

8.5.4 LN: Heat measured values Name: MHET

This LN describes the measurement of heat in the material (air, water, steam, etc.) used for heating and cooling. See Table 45.

			МН	ET class			
Data object name	Common data class	Explana	planation				
LNName		Shall be	inherited	from logical-node class (see IEC 61850-7-2)			
Data	!	•					
System logical noc	le data						
		LN shal	l inherit all	mandatory data from common logical node class		М	
		The dat	a from LLN	10 may optionally be used		0	
Settings		1			-		
MatTvp	ENG	Type of	material:		1	1	
			Value	Explanation			
			0	Not applicable / Unknown			
			1	Air			
			2	Water			
			3	Steam		М	
			4	Oil		IVI	
			5	Hydrogen			
			6	Natural gas			
			7	Butane			
			8	Propane			
			99	Other			
HeatSpec	ASG	Specific	heat of ma	aterial		0	
MaxMatCal	ASG	Maximu	m heat cor	ntent of material		0	
MaxHeatOut	ASG	Maximu	m heat out	put of heating system		0	
Measured values	!	•					
MatVolm	MV	Volume	of materia	l		0	
MatPct	MV	Percent	of contain	er filled with material		0	
MatCal	MV	Heat of	material			0	
HeatOut	MV	Instanta	neous hea	at output		0	
AccHeatOut	MV	Accumu	lated heat	output since last reset		0	
Controls	•	•					
AccHeatCtI	SPC	Reset a	ccumulate	d heat output since last reset		0	

Table 45 – Heat measurement, LN (MHET)

8.5.5 LN: Flow measurements Name: MFLW

This LN describes the measurement of flows of liquid or gas materials (air, water, steam, oil, etc.) used for heating, cooling, lubrication, and other auxiliary functions. See Table 46.

Table 46 – Flow measurement, LN (MFLW)

MFLW class								
Data object name	Common data class	Explana	planation					
LNName		Shall be	inherited	from logical-node class (see IEC 61850-7-2)				
Data	•	•						
System logical nod	le data							
		LN shall	inherit all	mandatory data from common logical node class		М		
		The data	a from LLN	0 may optionally be used		0		
Settings	ł	1						
MatTyp	ENG	Type of	material:					
	_		Value	Explanation				
			0	Not applicable / Unknown				
			1	Air				
			2	Water				
			3	Steam		М		
			4	UII Hudrogon				
		-	5	Natural das				
		•	7	Butane				
			8	Propane				
			99	Other				
MatStat	ENG	State of	material:					
Matotat			Value	Explanation				
			0	Not applicable / Unknown				
			1	Gaseous		М		
			2	Liquid				
		-	3	Solid				
			99	Other				
MaxFlwRte	ASG	Maximu	m volume f	flow rate		0		
MinFlwRte	ASG	Minimur	n volume fl	low rate		0		
MinXsecArea	ASG	Smalles point	t restrictior	n on flow: area of cross-section of restricted		0		
Measured values								
FlwRte	MV	Volume	flow rate			C1		
FanSpd	MV	Fan or c	other fluid o	driver speed		0		
FlwHorDir	MV	Flow ho	rizontal dir	ection		0		
FlwVerDir	MV	Flow ve	rtical direct	tion		0		
MatDen	MV	Material	density			0		
MatCndv	MV	Material	thermal co	onductivity		0		
MatLev	MV	Material	level as p	ercent of full		0		
FlwVlvPct	MV	Flow va	ve opening	g percent		0		
Controls	I	1						
FlwVlvCtr	APC	Set flow	valve ope	ning percent		0		
FanSpdSet	APC	Set fan	(or other fl	uid driver) speed		0		
Metered values	•							
MtrVol	BCR	Metered	volume of	fluid since last reset		C2		

MFLW class						
Data object name	Common data class	Explanation	т	M/O/C		
NOTE Either C1 or C2 or both must be available.						

8.5.6 LN: Vibration conditions Name: SVBR

This LN describes the vibration of material, including rotating plant objects as well as vibrations from liquid or gas flows (e.g. cavitation). See Table 47.

SVBR class								
Data object name	Common data class	Explanation	Т	M/O/C				
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)						
Data								
System logical node	data		•					
		LN shall inherit all mandatory data from common logical node class		М				
		The data from LLN0 may optionally be used		0				
Status information								
Alm	SPS	Vibration alarm level reached		М				
Trip	SPS	Vibration trip level reached		0				
Settings								
VbrAlmSpt	ASG	Maximum vibration magnitude setpoint		0				
VbrTrSpt	ASG	Vibration trip level setpoint		0				
AxDspAlmSpt	ASG	Axial displacement alarm level setpoint		0				
AxDspTrpSpt	ASG	Axial displacement trip level setpoint		0				
Measured values		•						
VbrMag	MV	Vibration magnitude		М				
VbrPer	MV	Vibration periodicity		0				
VbrDir	MV	Vibration direction		0				
AxDsp	MV	Total axial displacement		0				

Table 47 – Vibration conditions, LN (SVBR)

8.5.7 LN: Emissions measurements Name: MENV

The characteristics of the emissions of the DER system cover emissions, sensitivity of DER unit to external conditions, and other key environmental items. In addition, many of the environmental sensors may be located remotely from the instantiated logical node. This logical node may therefore represent a collection of environmental information from many sources. The need for different objects may vary significantly based on the type of DER. See Table 48.

MENV class							
Data object name	Common data class	Explanation	Т	M/O/C			
LNName		Shall be inherited from logical-node class (see IEC 61850-7-2)					
Data		•					
System logical node	e data						
		LN shall inherit all mandatory data from common logical node class		М			
		The data from LLN0 may optionally be used		0			
Status information							
SmokAlm	SPS	Smoke alarm		0			
FloodAlm	SPS	Flood alarm		0			
Settings							
CTrade	INS	Involved in carbon trading		0			
CCredit	ASG	Carbon production credit value		0			
GreenTag	INS	Green tag information		0			
PartSens	ASG	Sensitivity to particulates		0			
FloodLev	ASG	Flood level		0			
Measured values							
CO2	MV	CO2 emissions		0			
СО	MV	CO emissions		0			
NOX	MV	NOx emissions		0			
SOX	MV	SOx emissions		0			
Dust	MV	Smoke/dust particulates suspended in air		0			
Snd	MV	Sound emissions		0			
02	MV	Oxygen		0			
03	MV	Ozone		0			

Table 48 – Emissions measurements, LN (MENV)

8.5.8 LN: Meteorological conditions Name: MMET

The characteristics of the meteorological conditions of the DER system cover meteorological parameters.

8.6 Logical nodes for metering

8.6.1 Electric metering (informative)

Metering of usage of materials, such as electricity, liquids, and gas, may or may not be handled by the same systems that manage DER devices, essentially because metering usually involves payments for metered amounts. In electric metering, IEC 62056 and ANSI C12.19 are the standards used for revenue metering of customers, while similar standards are used for water, gas, and other liquids and gases. Nonetheless, energy usage, liquid usage, and gas usage can often be needed for other purposes than payments, such as calculations on how much fuel is available or emissions assessments or water flow evaluations. Therefore, IEC 61850 LNs could provide this usage metering information, but currently only include a basic electric metering capability.

Metering LNs include:

• MMTR for electricity metering (see IEC 61850-7-4).

9 DER common data classes (CDC)

9.1 Array CDCs

The following are additional common data classes, which are required for DER device models.

9.1.1 E-Array (ERY) enumerated common data class specification

The ERY CDC provides a means for defining an array of set points. This CDC is similar to HST (histogram), but expands it to enumerated and provides both quality and timestamp for each element in the array. See Table 49.

ARY class									
Data object name	Attribute type	FC	TrgOp	Value/value range	M/O/C				
DataName	Inherited from data class (see IEC	61850	0-7-2)						
DataAttribute	DataAttribute								
	setting								
numPts	INT16U	SP		Length of array >= 1	М				
eAry	ARRAY 0numPts-1 OF ENUMERATED	SP	dchg	1 to numPts values	М				
qAry	ARRAY 0numPts-1 OF Quality	SP	qchg	1 to numPts quality codes	0				
tAry	ARRAY 0numPts-1 OF TimeStamp	SP		1 to numPts timestamps	0				
	configuration	n, des	cription a	nd extension					
dAry	ARRAY 1numPts of VISIBLE STRING255	DC		0 to numPts descriptions	0				
d	VISIBLE STRING255	DC			0				
dU	UNICODE STRING255	DC			0				
cdcNs	VISIBLE STRING255	ΕX			AC_DLNDA_ M				
cdcName	VISIBLE STRING255	EX			AC_DLNDA_ M				
dataNs	VISIBLE STRING255	EX			AC_DLN_M				

Table 49 – E-Array (ERY) common data class specification

9.1.2 V-Array (VRY) visible string common data class specification

The VRY CDC provides a means for defining an array of enumerated points. This CDC is similar to HST (histogram), but changes the type to VISIBLE STRING and provides both quality and timestamp for each element in the array. See Table 50.

Table 50 – V-Array (VRY) common data	class specification
-------------------------	---------------	---------------------

ARY class							
Data object name	Attribute type	FC	TrgOp	Value/value range	M/O/C		
DataName	DataName Inherited from data class (see IEC 61850-7-2)						
DataAttribute	DataAttribute						
	setting						
numPts	INT16U	SP		Length of array >= 1	М		
vAry	ARRAY 0numPts-1 OF VISIBLE STRING255	SP	dchg	1 to numPts enumerated values	Μ		

ARY class								
Data object name	Attribute type	FC	TrgOp	Value/value range	M/O/C			
DataName	Inherited from data class (see IEC	61850	0-7-2)					
DataAttribute								
qAry	ARRAY 0numPts-1 OF Quality	SP	qchg	1 to numPts quality codes	0			
tAry	ARRAY 0numPts-1 OF TimeStamp	SP		1 to numPts timestamps	0			
	configuratio	n, des	cription a	nd extension				
dAry	ARRAY 0numPts-1 of VISIBLE STRING255	DC		0 to numPts descriptions	0			
d	VISIBLE STRING255	DC			0			
dU	UNICODE STRING255	DC			0			
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_ M			
cdcName	VISIBLE STRING255	EX			AC_DLNDA_ M			
dataNs	VISIBLE STRING255	ΕX			AC_DLN_M			

9.2 Schedule common data classes

Absolute time schedule (SCA) settings common data class specification 9.2.1

The SCA CDC provides a means for defining an absolute time array of setting values, such as schedules. The time intervals between points may be variable. See Table 51.

Table 51 – Schedule (SCA) common data class specification

SCA class	SCA class							
Data object name	Attribute type	FC	TrgOp	Value/value range	M/O/C			
DataName	Inherited from data class (se	e IEC 6185	0-7-2)					
DataAttribute	•							
		S	setting					
numPts	INT16U	SP		Length of array >= 1	AC_NSG_M			
val	ARRAY 1numPts OF FLOAT32	SP	dchg	1 to numPts values	AC_NSG_M			
rmpТур	ARRAY 1numPts OF ENUMERATED	SP	dchg	1 to numPts values: 1=Fixed, 2=Ramp, 3=Average	AC_NSG_C			
time	ARRAY 1numPts OF TimeStamp	SP	dchg	1 to numPts date/time values	AC_NSG_M			
numPts	INT16U	SG, SE		Length of array >= 1	AC_SG_M			
val	ARRAY 1numPts OF FLOAT32	SG, SE	dchg	1 to numPts point values	AC_SG_M			
rmpTyp	ARRAY 1numPts OF ENUMERATED	SG, SE	dchg	1 to numPts values: 1=Fixed, 2=Ramp, 3=Average	AC_SG_C			
time	ARRAY 1numPts OF TimeStamp	SG, SE	dchg	1 to numPts date/time values	AC_SG_M			
	configu	iration, des	scription a	and extension				
cur	VISIBLE STRING3	CF		Currency as 3-character string as per ISO 4217	0			
valUnits	Unit	CF		Units of val	0			

SCA class	SCA class							
Data object name	Attribute type	FC	TrgOp	Value/value range	M/O/C			
DataName	Inherited from data class (see							
DataAttribute	-							
valEq	ENUMERATED	CF		Equation for val: 1 = SI units, 2 = Currency as per ISO 4217 per SI unit, 3 = SI unit per currency	0			
valD	VISIBLE STRING255	DC		Description of val	0			
valDU	UNICODE STRING255	DC		Description of val in Unicode	0			
d	VISIBLE STRING255	DC		Description of instance of data	0			
dU	UNICODE STRING255	DC			0			
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_M			
cdcName	VISIBLE STRING255	EX			AC_DLNDA_M			
dataNs	VISIBLE STRING255	EX			AC_DLN_M			
rmpTyp is conditionally mandatory or optional: if val is a power-related type, then rmpTyp is mandatory; if val is currency, then rmpTyp is not necessary.								

9.2.2 Relative time schedule (SCR) settings common data class specification

The SCR CDC provides a means for defining a relative time array of setting values, such as schedules. The time intervals between points may be variable. See Table 52.

SCR Class							
Data object name	Attribute type	FC	TrgOp	Value/value range	M/O/C		
DataName	Inherited from data class (se	e IEC 6185	0-7-2)				
DataAttribute							
		S	etting				
numPts	INT16U	SP		Length of array >= 1	AC_NSG_M		
val	ARRAY 1numPts OF FLOAT32	SP	dchg	1 to numPts values	AC_NSG_M		
rmpTyp	ARRAY 1numPts OF ENUMERATED	SP	dchg	1 to numPts values: 1=Fixed, 2=Ramp, 3=Average	AC_NSG_C		
tmsOffset	ARRAY 1numPts OF UINT24	SP	dchg	1 to numPts of time offsets in seconds	AC_NSG_M		
numPts	INT16U	SG, SE		Length of array >= 1	AC_SG_M		
val	ARRAY 1numPts OF FLOAT32	SG, SE	dchg	1 to numPts point values	AC_SG_M		
rmpTyp	ARRAY 1numPts OF ENUMERATED	SG, SE	dchg	1 to numPts values: 1=Fixed, 2=Ramp, 3=Average	AC_SG_C		
tmsOffset	ARRAY 1numPts OF UINT24	SG, SE	dchg	1 to numPts of time offsets in seconds	AC_SG_M		
	configu	ration, des	cription a	nd extension			
cur	VISIBLE STRING3	CF		Currency as 3-character string as per ISO 4217	0		
valUnits	Unit	CF		Units of val	0		

Table 52 – Schedule (SCR) common data class specification

SCR Class					
Data object name	Attribute type	FC	TrgOp	Value/value range	M/O/C
DataName	Inherited from data class (see IEC 61850-7-2)				
DataAttribute					
valEq	ENUMERATED	CF		Equation for val: 1 = SI units, 2 = Currency as per ISO 4217 per SI unit, 3 = SI unit per currency	0
valD	VISIBLE STRING255	DC		Description of val	0
valDU	UNICODE STRING255	DC		Description of val in Unicode	0
d	VISIBLE STRING255	DC		Description of instance of data	0
dU	UNICODE STRING255	DC			0
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_M
cdcName	VISIBLE STRING255	EX			AC_DLNDA_M
dataNs	VISIBLE STRING255	EX			AC_DLN_M
rmpTyp is conditionally mandatory or optional: if val is a power-related type, then rmpTyp is mandatory; if val is currency, then rmpTyp is not necessary.					

- 96 -

Annex A

(informative)

Glossary

For the purpose of this document, the following additional definitions apply.

A.1 area electric power system area EPS an EPS that serves local EPSs

[IEEE 1547]

A.2

catalyst

a chemical substance that increases the rate of a reaction without being consumed; after the reaction it can potentially be recovered from the reaction mixture chemically unchanged

The catalyst lowers the activation energy required, allowing the reaction to proceed more quickly or at a lower temperature. In a fuel cell, the catalyst facilitates the reaction of oxygen and hydrogen. It is usually made of platinum powder very thinly coated onto carbon paper or cloth. The catalyst is rough and porous so that the maximum surface area of the platinum can be exposed to the hydrogen or oxygen. The platinum-coated side of the catalyst faces the membrane in the fuel cell.

[US DOE]

A.3

electric power network

entity consisting of particular installations, substations, lines or cables for the transmission and distribution of electric energy

[IEV 601-01-01, modified]

NOTE The boundaries of the different parts of an electric power network are defined by appropriate criteria, such as geographical situation, ownership, voltage, etc.

A.4

electricity supply system

entity consisting of all installations and plant provided for the purpose of generating, transmitting and distributing electric energy

[IEV 601-01-01, modified]

A.5

fuel processor

device used to generate hydrogen from fuels such as natural gas, propane, gasoline, methanol, and ethanol, for use in fuel cells

[US DOE]

A.6

illuminance

the luminous flux received by an elementary surface divided by the area of this surface

[IEV 723-08-30]

NOTE In the SI system of units, illuminance is expressed in lux (Ix) or lumens per square metre (Im/m²).

A.7 intelligent electronic device IED

microprocessor-based controller of power system equipment, such as circuit breakers, transformers, and capacitor banks

[WIKI 2007-12]

NOTE In addition to controlling a device, an IED may have connections as a client, or as a server, or both, with computer-based systems including other IEDs. An IED is, therefore, any device incorporating one or more processors, with the capability to receive data from an external sender or to send data to an external receiver.

A.8 international system of units SI

the modern metric system of measurement

[NIST SP330]

A.9 local electric power system local EPS

an EPS contained entirely with in a single premise or group of premises

[IEEE 1547]

A.10

log

to reproduce spontaneously, cyclically or by polling a recording in a readable way for human operators

[IEV 351-22-07]

NOTE As a noun, a log is historical information of events, actions, and states, typically listed chronologically.

A.11

luminous efficacy (Im/W)

quotient of the luminous flux emitted by the power consumed by the source

[IEV 845-01-55]

A.12

power conversion efficiency

ratio of the power delivered by the converter to the total power drawn from the input power supplies feeding lines, including the converter auxiliaries, and is usually expressed as a percentage

[IEC 61800-4:2002, definition 3.1.6]

A.13

radiance

the flux density of radiant energy per unit solid angle and per unit projected area of radiating surface

[Merriam-Webster dictionary]

Bibliography

- 98 -

- IEC 60050, International Electrotechnical Vocabulary (IEV), http://www.electropedia.org/
- IEC 60050-111:1996, International Electrotechnical Vocabulary Chapter 111: Physics and chemistry
- IEC 60050-151:2001, International Electrotechnical Vocabulary Part 151: Electrical and magnetic devices
- IEC 60050-161:1990, International Electrotechnical Vocabulary Chapter 161: Electromagnetic compatibility
- IEC 60050-351:2006, International Electrotechnical Vocabulary Part 351: Control technology
- IEC 60050-371:1984, International Electrotechnical Vocabulary Chapter 371: Telecontrol
- IEC 60050-482:2004, International Electrotechnical Vocabulary Part 482: Primary and secondary cells and batteries
- IEC 60050-521:2002, International Electrotechnical Vocabulary Part 521: Semiconductor devices and integrated circuits
- IEC 60050-601:1985, International Electrotechnical Vocabulary Chapter 601: Generation, transmission and distribution of electricity – General
- IEC 60050-602:1983, International Electrotechnical Vocabulary Chapter 602: Generation, transmission and distribution of electricity – Generation
- IEC 60050-701:1988, International Electrotechnical Vocabulary Chapter 701: Telecommunications, channels and networks
- IEC 60050-723:1997, International Electrotechnical Vocabulary Chapter 723: Broadcasting: Sound, television, data
- IEC 60050-845:1987, International Electrotechnical Vocabulary Chapter 845: Lighting
- IEC 60364-7-712:2002, Electrical installations of buildings Part 7-712: Requirements for special installations or locations – Solar photovoltaic (PV) power supply systems
- IEC 60870-5-101:2003, Telecontrol equipment and systems Part 5-101: Transmission protocols – Companion standard for basic telecontrol tasks
- IEC 60870-5-104:2006, Telecontrol equipment and systems Part 5-104: Transmission protocols – Network access for IEC 60870-5-101 using standard transport profiles
- IEC 61727:2004, Photovoltaic (PV) systems Characteristics of the utility interface
- IEC 61800-4:2002, Adjustable speed electrical power drive systems Part 4: General requirements – Rating specifications for a.c. power drive systems above 1 000 V a.c. and not exceeding 35 kV
- IEC 61850 (all parts), Communication networks and systems for power utility automation
- IEC 61850-6:2004, Communication networks and systems in substations Part 6: Configuration description language for communication in electrical substations related to IEDs
- IEC 61850-7-1, Communication networks and systems in substations Part 7-1: Basic communication structure for substations and feeder equipment Principles and models
- IEC 61850-8 (all parts), Communication networks and systems in substations Part 8: Specific communication service mapping (SCSM)
- IEC 61850-9 (all parts), Communication networks and systems in substations Part 9: Specific communication service mapping (SCSM)
- IEC 61850-10, Communication networks and systems in substations Part 10: Conformance testing

- IEC 61968 (all parts), Application integration at electric utilities System interfaces for distribution management
- IEC 61970-301, Energy management system application program interface (EMS-API) Part 301: Common Information Model (CIM) base
- IEC 62056 (all parts), Electricity metering Data exchange for meter reading, tariff and load control
- IEC/TS 62257-7-1:2006, Recommendations for small renewable energy and hybrid systems for rural electrification Part 7-1: Generators Photovoltaic arrays
- IEC/TS 62257-8-1:2007, Recommendations for small renewable energy and hybrid systems for rural electrification – Part 8-1: Selection of batteries and battery management systems for stand-alone electrification systems – Specific case of automotive flooded lead-acid batteries available in developing countries
- IEC 62351-7, Power systems management and associated information exchange Data and communication security – Part 7: Network and system management (NSM) data object models⁶⁾
- ISO/IEC 62382-1:1993, Information technology Vocabulary Part 1: Fundamental terms
- ISO/IEC 7498-1:1994, Information technology Open Systems Interconnection Basic Reference Model: The Basic Model
- ISO 1000, SI units and recommendations for the use of their multiples and of certain other units
- ANSI C12.19, Utility industry end device data tables
- IEEE 1547, Standard for Interconnecting Distributed Resources with Electric Power Systems
- [US DOE] United States Department of Energy Energy Efficiency and Renewable Energy Glossary of Terms at http://www1.eere.energy.gov/solar/solar_glossary.html and http://www1.eere.energy.gov/hydrogenandfuelcells/glossary.html
- [Merriam-Webster dictionary] Standard English dictionary
- [NIST] United States National Institute of Standards and Technology
- [Photovoltaic industry] Agreements by the photovoltaic industry
- OPC XML-DA Specification Version 1.0; Release Candidate 2.1; June 11, 2003
- W3C, Extensible Markup Language (XML) 1.0, http://www.w3.org/TR/2000/REC-xml-20001006
- W3C, Name spaces in XML, http://www.w3.org/TR/1999/REC-xml-names-19990114
- W3C, XML Schema Part 0: Primer, http://www.w3.org/TR/2001/REC-xmlschema-0-20010502
- W3C, XML Schema Part 1: Structures, http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
- W3C, XML Schema Part 2: Data Types, http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

⁶⁾ Under consideration.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

3, rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland

Tel: + 41 22 919 02 11 Fax: + 41 22 919 03 00 info@iec.ch www.iec.ch